
CS342: Bioinformatics
Lecture 4



Multiple Pattern Matching with Keyword
Trees
Runtime? Assume 𝑁 is sum of lengths of patterns, 𝑚 is the length of the 
text, and 𝑛 is length of longest pattern

𝑂(𝑁 + 𝑛𝑚)

Question: Is this better than brute force? [Think, pair, share]



Suffix Trees

Stores all suffixes of a text t1,…,tm

• Similar to keyword tree, except edges that form paths are collapsed.

• All internal vertices have at least two outgoing edges

• Leaves labeled by index of pattern in text.



Ukkonen's Algorithm

• Builds a suffix tree for 𝑠 = 𝑠1𝑠2…𝑠𝑚 in 𝑂(𝑚) time.

• https://brenden.github.io/ukkonen-animation/

https://brenden.github.io/ukkonen-animation/


Keyword Trees vs. Suffix Trees

• Keyword and suffix trees are useful data structures supporting various 
pattern finding problems

• Keyword trees:

• Build keyword tree of patterns, 
and thread text through it

• Suffix trees:

• Build suffix tree of text, 
and thread patterns through it



Knuth-Morris-Pratt Algorithm

• Solves a version of the basic pattern matching problem.

• Rather than shifting 𝑝 by one at each iteration (brute-force), use info about 𝑝 to 
never go “backwards".

Input: Text 𝑡 = 𝑡0…𝑡𝑚 and pattern 𝑝 = 𝑝0…𝑝𝑚 (0 index)

Output: Index of the first occurrence of 𝑝 in 𝑡.

• Step 1: Compute a table 𝑇 based only on pattern 𝑝 that tells us where the pattern 
contains potential repeats.

• Step 2: Use 𝑇 to search for the first occurrence of 𝑝 in 𝑡.

Computing T

• 𝑇 is table of size length of 𝑝.


