CS342: Bioinformatics Lecture 7

Greedy Algorithms

- Def: Algorithms that make locally optimal choices using a metric with the hope of finding a globally optimal solution.
- Example: Making change with US coins.
- Optimization Problem: Given an input, compute a solution, subject to various constraints, that either minimizes cost or maximizes profit.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: ci< c c < ... < c cm.
    coins selected
S}\leftarrow
while (x f 0) {
    let k be largest integer such that ck
        if (k = 0)
            return "no solution found"
        x}\leftarrow\mathbf{x}-\mp@subsup{\mathbf{c}}{\textrm{k}}{
        S}\leftarrowS\cup{k
}
return S
```


Greedy Motif Search

```
GreedyMotifSearch(DNA, k, t)
    BestMotifs \leftarrow empty motif list
    for each k-mer Motif in the first string from DNA
    Motif1 \leftarrow Motif
        for i = 2 to t
        form Profile from motifs Motif1, ..., Motifi - 1
    Motifi & Profile-most probable k-mer in the i-th string in DNA
    Motifs \leftarrow (Motif1, ..., Motift)
        if Score(Motifs) < BestScore:
            BestMotifs \leftarrow Motifs
            BestScore \leftarrow Score(Motifs)
return BestMotifs
```


A Serious Scientific Problem ...

Differences between species?

- Some are obviously similar...
- Some are obviously different...
- Some are close calls...
- The differences that matter are in the
 genes!
- And the gene order is important!

Genome Rearrangements

- Humans and mice have similar genomes, but their genes are ordered differently
- ~245 rearrangements
- ~ 300 large synteny blocks

Genome Rearrangements

Unknown ancestor
~ 75 million years ago

- What are the similarity blocks and how to find them?
- What is the architecture of the ancestral genome?
- What is the evolutionary scenario for transforming one genome into the other?

History of Chromosome X

Rat Consortium, Nature, 2004
Rearrangement
Events:

- Reversals
-Fusions
-Fissions
-Translocation

Reversals

12345678910

- Blocks represent conserved genes.
- Reversals, or inversions, are particularly relevant to speciation. Recombinations cannot occur between reversed and normally ordered segments.

Reversals

- Blocks represent conserved genes.
- In the course of evolution or in a clinical context, blocks 1 ... 10 could be reordered as 12387654910 .

Reversals and Breakpoints

The inversion introduced two breakpoints (disruptions in order).

Reversals and Gene Orders

- Gene order can be represented by a permutation π.

$$
\begin{gathered}
\pi=\pi_{1} \ldots \pi_{i-1} \pi_{i} \pi_{i+1} \ldots \pi_{j-1} \pi_{j} \pi_{j+1} \ldots \pi_{n} \\
\rho(i, j) \\
\pi_{1} \ldots \pi_{i-1} \pi_{j} \pi_{j-1} \ldots \pi_{i+1} \pi_{i} \pi_{j+1} \ldots \pi_{n}
\end{gathered}
$$

- Reversal $\rho(i, j)$ reverses (flips) the elements from i to j in π

Reversals: Example

$$
\begin{aligned}
& \pi=12345678 \\
& \rho(3,5) \\
& 12543678 \\
& \rho(5,6) \\
& 12546378
\end{aligned}
$$

"Reversal Distance" Problem

- Goal: Given two permutations over n elements, find the shortest series of reversals that transforms one into another
- Input: Permutations π and σ
- Output: A series of reversals $\rho_{1}, \ldots . \rho_{t}$ transforming π into σ, such that t is minimum
- \boldsymbol{t} - reversal distance between π and σ (\# of reversals)
- d(π, σ) - smallest possible value of t, given π and σ

"Sorting By Reversals" Problem

A simplified restatement of the same problem....

- Goal: Given a permutation, find a shortest series of reversals that transforms it into the identity permutation (12 ... n)
- Input: Permutation π
- Output: A series of reversals $\rho_{1}, \ldots \rho_{\mathrm{t}}$ transforming π into the identity permutation such that t is minimum
- $\boldsymbol{t}=\boldsymbol{d}(\boldsymbol{\pi})$ - reversal distance of π

Sorting By Reversals: Example

$$
\begin{aligned}
& \pi=\begin{array}{llllllllll}
3 & 4 & 2 & 1 & 5 & 6 & 7 & 10 & 9 & 8 \\
4 & 3 & 2 & 1 & 5 & 6 & 7 & 10 & 9 & 8 \\
4 & 3 & 2 & 1 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array} \\
& d(\pi)=3
\end{aligned}
$$

Sorting by Reversals: 4 flips

Step 0: $24 \underline{4} 58761$ Step 1: $2345 \underline{8} 61$ Step 2: | 2 | 3 | 4 | 5 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Step 3: 87654321 Step 4: 12345678

What is the reversal distance for this permutation?
Can it be sorted in 3 flips? How can we know?

Sorting By Reversals: A Greedy Algorithm

- If sorting permutation $\pi=123645$, the first three elements are already in order so it does not make any sense to break them apart.
- The length of the already sorted prefix of π is denoted prefix (π)
- $\operatorname{prefix}(\pi)=3$
- This results in an idea for a greedy algorithm: increase prefix (π) at every step

Sort by Reversals: An Example

- Doing so, π can be sorted

$$
123456
$$

- Number of steps to sort permutation of length n is at most ($n-1$)

Greedy Algorithm

```
SimpleReversalSort( \(\pi\) )
1 for \(i \leftarrow 1\) to \(n-1\)
\(2 j \leftarrow\) position of element \(i\) in \(\pi\) (i.e., \(\pi_{j}=i\) )
3 if \(j \neq i\)
\(4 \quad \pi \leftarrow \pi \rho(i, j)\)
5 output \(\pi\)
6 if \(\pi\) is the identity permutation
return
```


Analyzing SimpleReversalSort

- SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi=\underline{612345: ~}$

Flip 1: $1 \underline{62345}$
Flip 2: 126345
Flip 3: 123645
Flip 4: $1234 \underline{65}$
Flip 5: 123456

Analyzing SimpleReversalSort

- But it can be sorted in two flips:

$$
\pi=612345
$$

Flip 1: 543216
Flip 2: 123456

- So, SimpleReversalSort(π) is not optimal
- Optimal algorithms are unknown for many problems; approximation algorithms are used

Approximation Algorithms

- Find approximate solutions rather than optimal solutions
- The approximation ratio of an algorithm \mathcal{A} on input π is:

$$
\mathcal{A}(\pi) / \operatorname{OPT}(\pi)
$$

where
$\mathcal{A}(\pi)$ - solution produced by algorithm \mathcal{A}
$\operatorname{OPT}(\pi)$ - optimal solution of the problem

Approximation Ratio/Performance Guarantee

- Approximation ratio (performance guarantee) of algorithm \mathcal{A} : \max approximation ratio over all inputs of size n
- For a minimizing algorithm \mathcal{A} (like ours):
- Approx Ratio $=\max _{|\pi|=n} \mathcal{A}(\pi) / \operatorname{OPT}(\pi) \geq 1.0$
- For maximization algorithms:
- Approx Ratio $=\min _{|\pi|=n} \mathcal{A}(\pi) / \operatorname{OPT}(\pi) \leq 1.0$

Approximation Ratio

SimpleReversalSort (π)
1 for $i \leftarrow 1$ to $n-1$
$2 \quad j \leftarrow$ position of element i in π (i.e., $\pi_{j}=i$)
$3 \quad$ if $j \neq i$
$4 \quad \pi \leftarrow \pi \rho(i, j)$
5
$6 \quad$ output π
6
$7 \quad$ if π is the identity permutation
return

Step 0: 612345
Step 0: 612345
Step 1: 162345
Step 1: 543216
Step 2: $12 \underline{63} 45$
Step 2: 123456
Step 3: 123645
Step 4: $1234 \underline{65}$
Step 5: 123456

