CS342: Bioinformatics Lecture 7

Greedy Algorithms

- **Def:** Algorithms that make locally optimal choices using a metric with the hope of finding a globally optimal solution.
- Example: Making change with US coins.
- **Optimization Problem**: Given an input, compute a solution, subject to various constraints, that either minimizes cost or maximizes profit.

Coin-Changing: Greedy Algorithm

Cashier's algorithm. At each iteration, add coin of the largest value that does not take us past the amount to be paid.

```
Sort coins denominations by value: c_1 < c_2 < ... < c_n.

\checkmark^{\text{coins selected}}

S \leftarrow \phi

while (x \neq 0) {

let k be largest integer such that c_k \leq x

if (k = 0)

return "no solution found"

x \leftarrow x - c_k

S \leftarrow S \cup \{k\}

}

return S
```

Greedy Motif Search

```
GreedyMotifSearch(DNA, k, t)
        BestMotifs ← empty motif list
BestScore ← t * k
        for each k-mer Motif in the first string from DNA
             Motif1 ← Motif
             for i = 2 to t
                 form Profile from motifs Motif1, ..., Motifi - 1
                 Motifi ← Profile-most probable k-mer in the i-th string in DNA
             Motifs ← (Motif1, ..., Motift)
             if Score(Motifs) < BestScore:</pre>
                 BestMotifs ← Motifs
                 BestScore ← Score(Motifs)
        return BestMotifs
```

A Serious Scientific Problem ...

Differences between species?

- Some are obviously similar...
- Some are obviously different...
- Some are close calls...
- The differences that matter are in the genes!
- And the gene order is important!

Genome Rearrangements

- Humans and mice have similar genomes, but their genes are ordered differently
- ~245 rearrangements
- ~ 300 large synteny blocks

Genome Rearrangements

- What are the similarity blocks and how to find them?
- What is the architecture of the ancestral genome?
- What is the evolutionary scenario for transforming one genome into the other?

History of Chromosome X

- Blocks represent conserved genes.
- Reversals, or *inversions*, are particularly relevant to speciation. Recombinations cannot occur between reversed and normally ordered segments.

- Blocks represent conserved genes.
- In the course of evolution or in a clinical context, blocks 1 ... 10 could be reordered as 1 2 3 8 7 6 5 4 9 10.

The inversion introduced two *breakpoints* \checkmark (disruptions in order).

Reversals and Gene Orders

 Gene order can be represented by a permutation *π*:

$$\pi = \pi_1 \dots \pi_{i-1} \pi_i \pi_{i+1} \dots \pi_{j-1} \pi_j \pi_{j+1} \dots \pi_n$$

$$\rho(i,j)$$

$$\pi_1 \dots \pi_{i-1} \pi_j \pi_{j-1} \dots \pi_{i+1} \pi_i \pi_{j+1} \dots \pi_n$$

• Reversal ρ (*i*, *j*) reverses (flips) the elements from *i* to *j* in π

Reversals: Example

$$\pi = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

$$\rho(3,5) \downarrow$$

$$1 \ 2 \ 5 \ 4 \ 3 \ 6 \ 7 \ 8$$

$$\rho(5,6) \qquad \downarrow$$

$$1 \ 2 \ 5 \ 4 \ 6 \ 3 \ 7 \ 8$$

"Reversal Distance" Problem

- <u>Goal</u>: Given two permutations over *n* elements, find the shortest series of reversals that transforms one into another
- Input: Permutations π and σ
- <u>Output</u>: A series of reversals ρ_1, \dots, ρ_t transforming π into σ , such that t is minimum
- **t** reversal distance between π and σ (# of reversals)
- $d(\pi, \sigma)$ smallest possible value of *t*, given π and σ

"Sorting By Reversals" Problem

A simplified restatement of the same problem....

- <u>Goal</u>: Given a permutation, find a shortest series of reversals that transforms it into the identity permutation (1 2 ... *n*)
- Input: Permutation π
- <u>Output</u>: A series of reversals $\rho_1, \dots \rho_t$ transforming π into the identity permutation such that t is minimum
- $t = d(\pi)$ reversal distance of π

Sorting By Reversals: Example

$$\pi = 3 \ 4 \ 2 \ 1 \ 5 \ 6 \ 7 \ 10 \ 9 \ 8$$

$$4 \ 3 \ 2 \ 1 \ 5 \ 6 \ 7 \ 10 \ 9 \ 8$$

$$4 \ 3 \ 2 \ 1 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$$

$$1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$$

$$d(\pi) = 3$$

Sorting by Reversals: 4 flips

Step 0: 2 4 3 5 8 7 6 1 Step 1: 2 3 4 5 8 7 6 1 Step 2: 2 3 4 5 6 7 8 1 Step 3: 8 7 6 5 4 3 2 1 Step 4: 1 2 3 4 5 6 7 8

What is the reversal distance for this permutation? Can it be sorted in 3 flips? How can we know? Sorting By Reversals: A Greedy Algorithm

- If sorting permutation $\pi = 1 \ 2 \ 3 \ 6 \ 4 \ 5$, the first three elements are already in order so it does not make any sense to break them apart.
- The length of the already sorted prefix of π is denoted prefix(π)
 - $prefix(\pi) = 3$
- This results in an idea for a greedy algorithm: increase prefix(π) at every step

Sort by Reversals: An Example

• Doing so, π can be sorted

 Number of steps to sort permutation of length n is at most (n − 1) Greedy Algorithm

SimpleReversalSort(π) 1 for $i \in 1$ to n-12 $j \in$ position of element i in π (i.e., $\pi_j = i$) 3 if $j \neq i$ 4 $\pi \in \pi \ \rho(i, j)$ 5 output π 6 if π is the identity permutation 7 return

Analyzing SimpleReversalSort

• SimpleReversalSort does not guarantee the smallest number of reversals and takes five steps on $\pi = 612345$:

Flip 1: 1 <u>6 2</u> 3 4 5 Flip 2: 1 2 <u>6 3</u> 4 5 Flip 3: 1 2 3 <u>6 4</u> 5 Flip 4: 1 2 3 4 <u>6 5</u> Flip 5: 1 2 3 4 <u>5</u>

Analyzing SimpleReversalSort

• But it can be sorted in two flips:

$$\pi = 6 1 2 3 4 5$$
Flip 1: 5 4 3 2 1 6
Flip 2: 1 2 3 4 5 6

- So, SimpleReversalSort(π) is not optimal
- Optimal algorithms are unknown for many problems; approximation algorithms are used

Approximation Algorithms

- Find *approximate* solutions rather than *optimal* solutions
- The approximation ratio of an algorithm \mathcal{A} on input π is:

 $\mathcal{A}(\pi)$ / OPT(π)

where

 $\mathcal{A}(\pi)$ - solution produced by algorithm \mathcal{A} OPT(π) - optimal solution of the problem Approximation Ratio/Performance Guarantee

- Approximation ratio (performance guarantee) of algorithm \mathcal{A} : max approximation ratio over all inputs of size n
 - For a minimizing algorithm \mathcal{A} (like ours):
 - Approx Ratio = $\max_{|\pi| = n} \mathcal{A}(\pi) / OPT(\pi) \ge 1.0$
 - For maximization algorithms:
 - Approx Ratio = $\min_{|\pi| = n} \mathcal{A}(\pi) / OPT(\pi) \le 1.0$

Approximation Ratio

<u>SimpleReversalSort(π)</u>

1 for $i \leftarrow 1$ to n-1

- 2 $j \leftarrow \text{position of element } i \text{ in } \pi \text{ (i.e., } \pi_j = i \text{)}$
- 3 **if** $j \neq i$

4
$$\pi \leftarrow \pi \rho(i, j)$$

- 5 **output** π
- 6 **if** π is the identity permutation

7 return

Step 0: <u>61</u> 2 3 4 5	
Step 1: 1 6 2 3 4 5	
Step 2: 1 2 <u>6 3</u> 4 5	
Step 3: 1 2 3 <u>6 4</u> 5	
Step 4: 1 2 3 4 <u>6 5</u>	
Step 5: 1 2 3 4 5 6	

