CS342: Bioinformatics Lecture 10

Dynamic programming matrix:

Optimum alignment scores 11

$$
\begin{array}{rrrrrrrr}
\mathbf{T} & - & - & \mathbf{T} & \mathbf{C} & \mathbf{A} & \mathbf{T} & \mathbf{A} \\
\mathbf{T} & \mathbf{G} & \mathbf{C} & \mathbf{T} & \mathbf{C} & \mathbf{G} & \mathbf{T} & \mathbf{A} \\
+5 & -6 & -6 & +5 & +5 & -2 & +5 & +5
\end{array}
$$

Longest Common Subsequence (LCS)

Given two sequences $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Z=\left\langle z_{1}, z_{2}, \ldots, z_{k}\right\rangle$, we say that Z is a subsequence of X if there is a strictly increasing sequence of k indices $\left\langle i_{1}, i_{2}, \ldots, i_{k}\right\rangle\left(1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq m\right)$ such that $Z=\left\langle x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\rangle$

For example, let $\mathrm{X}=\langle\mathrm{ABRACADABRA}$ and let $\mathrm{Z}=<$ AADAA $>$, then Z is a subsequence of X.

LCS Problem: Given two sequences $X=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, \ldots, y_{n}\right\rangle$ determine the length of their longest common subsequence, and more generally the sequence itself.


```
#Bottom-Up Approach
def lcs_with hints(A, B):
    m}=1en(A
    n}=1\textrm{ln}(\textrm{B}
    lcsList = [[0 for i in range(n+1)] for j in range(m+1)]
    hints = [[0 for i in range(n+1)] for j in range(m+1)]
    for i in range(1, m+1):
        lcsList[i][0] = 0
        hints[i][0] = "|"
    for j in range(1, n+1):
        lcsList[0][j] = 0
        hints[0][j] = "-'
    for i in range(1, m+1):
        for j in range(1, n+l):
            if(A[i-1] == B[j-1]):
                lcsList[i][j] = lcsList[i-l][j-1] + 1
                hints[i][j] = "\\"
                else:
                lcsList[i][j] = max(lcsList[i-1][j], lcsList[i][j-1])
                if lcsList[i-1][j] >= lcsList[i][j-1]:
                    hints[i][j] = "|"
                else:
                        hints[i][j] = "-'
    return lcsList[m][n], hints
```

```
def get_lcs_sequence( }A,B,\mathrm{ hints):
    i = len(A)
    j = len(B)
    lcs = ""
    While i != 0 or j != 0:
        if hints[i][j] == "\\":
            lcs = B[j-1] + lcs
            i -= 1
            j -= 1
        elif hints[i][j] == "|":
            i -= 1
        else:
            j -= 1
    return los
```


LCS Example

(a)
... with hints

(b)

Biology

Transitions: $\mathrm{A} \leftarrow \rightarrow \mathrm{G}, \mathrm{C} \leftarrow \rightarrow \mathrm{T}$
Transversions: $\mathrm{A} \leftarrow \rightarrow \mathrm{C}, \mathrm{A} \leftarrow \mathrm{T}, \mathrm{G} \leftarrow \rightarrow \mathrm{C}, \mathrm{G} \leftarrow \rightarrow \mathrm{T}$

Transitions are interchanges of two-ring purines (e.g., $A \leftarrow \rightarrow G$) or one ring pyrimidines $(C \leftarrow \rightarrow T)$.

Transversions are interchanges of purine for pyrimidines, so change of one ring for two ring structures.

Takeaway: Transitions happen more frequently than transversions, and are less likely to result in an amino acid substitution.

The values for amino acid substitutions were obtained from Henikoff S \& Henikoff JG (1992) Amino acid

PAM and BLOSUM

PAM1
BLOSUM80
4
Less divergent

PAM120
BLOSUM62

More divergent

