CS342: Bioinformatics Multiple Alignments

Section 6.10

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two?

And what for?

- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Generalizing Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

- Score: more conserved columns, better alignment

Alignment Paths

- Align 3 sequences: ATGC, AATC,ATGC

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C
0	0	1	2	3	4
	--	A	T	G	C

x coordinate
y coordinate
z coordinate

Resulting path in (x, y, z) space:

$$
(0,0,0) \rightarrow(1,1,0) \rightarrow(1,2,1) \rightarrow(2,3,2) \rightarrow(3,3,3) \rightarrow(4,4,4)
$$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

2-D vs 3-D Alignment Grid

2-D edit graph

2-D cell versus 3-D Alignment Cell

In 2-D, 3 edges lead to each interior vertex

In 3-D, 7 edges lead to each interior vertex
$\cdot 2-D[(i-1, j-1),(i-1, j),(i, j-1)] \rightarrow(i, j)$
$\cdot 3-\mathrm{D}[(i-1, j-1, k-1),(i-1, j, k),(i, j-1, k),(i, j, k-1),(i, j-1, k-1),(i-1, j, k-1),(i-1, j-1, k),] \rightarrow(i, j, k)$

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

$\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length n, the run time is $7 n^{3}$; $\mathrm{O}\left(n^{3}\right)$
- For k sequences, build a k-dimensional table, with run time $\left(2^{k}-1\right)\left(n^{k}\right) ; \mathrm{O}\left(2^{k} n^{k}\right)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

$$
\begin{array}{ll}
\mathrm{x}: & \text { AC-GCGG-C } \\
\mathrm{y}: & \text { AC-GC-GAG } \\
\mathrm{z}: & \text { GCCGC-GAG }
\end{array}
$$

Induces:

$$
\begin{array}{ll}
\mathrm{x}: ~ A C G C G G-C ; ~ & \mathrm{x}: ~ A C-G C G G-C ; \\
\mathrm{y}: ~ A C G C-G A C ; ~ & \mathrm{z}: ~ \mathrm{GCCGC}
\end{array} \mathrm{AC}-\mathrm{GAG} ; \quad \mathrm{z}: \text { GCCGCGAG }
$$

Inverse Problem: Do Pairwise Alignments imply a Multiple Alignment?

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

Can we construct a multiple alignment that induces them?

NOT ALWAYS

Why? Because pairwise alignments may be arbitraily inconsistent

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

Can not combine pairwise alignments into multiple alignment

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences
- Are we stuck, or is there some other trick?

Multiple Alignment using Profile Scores

	-	A	G	G	C	T	A	T	C	A	C	C	T	G
	T	A	G	-	C	T	A	C	C	A	-	-	-	G
	C	A	G	-	C	T	A	C	C	A	-	-	-	G
	C	A	G	-	C	T	A	T	C	A	C	-	G	G
	C	A	G	-	C	T	A	T	C	G	C	-	G	G
A	0	5	0	0	0	0	5	0	0	4	0	0	0	0
C	3	0	0	0	5	0	0	2	5	0	3	1	0	0
G	0	0	5	1	0	0	0	0	0	1	0	0	2	5
T	1	0	0	0	0	5	0	3	0	0	0	0	1	0
-	1	0	0	4	0	0	0	0	0	0	2	4	2	0

- Thus far we have aligned a sequence against other sequences
- Can we align a sequence against a profile?
- Can we align a profile against a profile?

Aligning alignments

- Given two alignments, can we align them?
x GGGCACTGCAT
y GGTTACGTC-- Alignment 1
z GGGAACTGCAG
w GGACGTACC-- Alignment 2
v GGACCT-----

Aligning alignments

- Given two alignments, can we align them?
- Hint: don't use the sequences...
align their profiles

```
x GGGCAC=TGCAT
y GGTTAC=GTC--
z GGGAAC=TGCAG
    || || | | Combined Alignment
w GG==ACGTACC--
v GG==ACCT-----
```


Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of $k-1$ sequences/ profiles. Repeat
- This is a heuristic greedy method

Greedy Approach: Example

- Consider these 4 sequences
s1: GATTCA
S2: GTCTGA
s3: GATATT
S4: GTCAGC

Scoring Matrix:
Match = 1
Mismatch =-1
Indel = -1

Greedy Approach: Example

- There are $\binom{4}{2}=6$ possible alignments

s2	GTCTGA	s1	GATTCA--
s4	GTCAGC (score = 2)	s4	G-T-CAGC (score $=0$)
s1	GAT-TCA	s2	G-TCTGA
s2	G-TCTGA (score = 1)	s3	GATAT-T (score = -1)
s1	GAT-TCA	s3	GAT-ATT
s3	GATAT-T (score = 1)	s4	G-TCAGC (score = -1)

Greedy Approach: Example

s_{2} and s_{4} are closest; combine:
s2 GTCTGA
s4 GTCAGC $>\underset{\text { (profile) }}{s_{2,4}} \mathbf{G T C t} / \mathrm{aGa} / \mathrm{c}$
new set of 3 sequences:
$\begin{array}{lll}s_{1} & \text { GATTCA } & \\ s_{3} & \text { GATATT } & \text { Repeat } \\ s_{2,4} & \text { GTCt/aGa/c } & \end{array}$

Greedy Approach: Example

Repeat for $\binom{3}{2}=3$ possible alignments

$$
\begin{aligned}
& \mathrm{S}_{1}: \text { GAT-TCA } \\
& \mathrm{S}_{3}: \text { GATAT-T } \\
& (\text { score }=1+1+1-1+1-1-1=1) \\
& \mathrm{S}_{1}: \text { GAT-TCA } \\
& \mathrm{S}_{2,4}: \text { G-TCtGa } \\
& (\operatorname{score}=2-2+2-2+1-1+1=1) \\
& \mathrm{S}_{3}: \text { GATAT-T } \\
& \mathrm{S}_{2,4}: \text { G-TCtGa } \\
& (\text { score }=2-2+2-2+1-1-1=-1)
\end{aligned}
$$

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
- Gaps in consensus string are permanent
- Use profiles to compare sequences
- CLUSTAL

ClustalW (Clustal Omega)

- Popular multiple alignment tool commonly used today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
1.) Construct pairwise alignments
2.) Build Guide Tree
3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence against each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

(. 17 means 17% identical)

Step 2: Guide Tree

- Create Guide Tree using the similarity matrix

ClustalW uses the neighbor-joining method (we will discuss this later in the course, in the section on clustering)

Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

Calculate:

$$
\begin{array}{ll}
v_{1,3} & =\text { alignment }\left(v_{1}, v_{3}\right) \\
v_{1,3,4} & =\operatorname{alignment}\left(\left(v_{1,3}\right), v_{4}\right) \\
v_{1,2,3,4} & =\operatorname{alignment}\left(\left(v_{1,3,4}\right), v_{2}\right)
\end{array}
$$

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

FOS_RAT
FOS_MOUSE
FOS_CHICK
FOSB_MOUSE
FOSB_HUMAN

PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPFD
PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPFD
SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPFD
PGPGPLAEVRDLPG-----STSAKEDGFGWLLPPPPPPP--------------------LPFQ
PGPGPLAEVRDLPG------SAPAKEDGFSWLLPPPPPPP----------------------LPFQ

Dots and stars show how well-conserved a column is.

