CS342: Bioinformatics Multiple Alignments

Section 6.10

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal

Generalizing Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

```
A T _ G C G _
A _ C G T _ A
A T C A C _ A
```

• Score: more conserved columns, better alignment

Alignment Paths

• Align 3 sequences: ATGC, AATC, ATGC

0	1	1	2	3	4
	А		Т	G	С
0	1	2	3	3	4
	А	А	Т		С
0	0	1	2	3	4
		А	Т	G	С

x coordinate

y coordinate

z coordinate

• Resulting path in (*x*, *y*,*z*) space:

 $(0,0,0) \rightarrow (1,1,0) \rightarrow (1,2,1) \rightarrow (2,3,2) \rightarrow (3,3,3) \rightarrow (4,4,4)$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

sink

2-D vs 3-D Alignment Grid

2-D edit graph

2-D cell versus 3-D Alignment Cell

•2-D [(i-1,j-1), (i-1,j), (i,j-1)] \rightarrow (i,j) •3-D [(i-1,j-1,k-1), (i-1,j,k), (i,j-1,k), (i,j,k-1), (i,j-1,k-1), (i-1,j,k-1), (i-1,j-1,k),] \rightarrow (i,j,k)

Architecture of 3-D Alignment Cell (*i*-1,*j*,*k*-1) (*i*-1,*j*-1,*k*-1) (i-1,j-1,k)(i-1,j,k)1- Match/Mismatch Path 6 – indels Paths 3 in one seq 3 in two seqs (*i*,*j*,*k*-1) (*i*,*j*-1,*k*-1) (*i*,*j*,*k*) (*i*,*j*-1,*k*)

Multiple Alignment: Dynamic Programming

•
$$S_{i,j,k} = \max \begin{cases} s_{i-1,j-1,k-1} + \delta(v_i, w_j, u_k) \\ s_{i-1,j-1,k} + \delta(v_i, w_j, u_k) \\ s_{i-1,j,k-1} + \delta(v_i, u_k) \\ s_{i,j-1,k-1} + \delta(u_i, u_k) \\ s_{i-1,j,k} + \delta(u_i, u_k) \\ s_{i,j-1,k} + \delta(v_i, u_k) \\ s_{i,j-1,k} + \delta(u_i, u_k) \\ s_{i,j-1,k} + \delta(u_i, u_k) \\ s_{i,j-1,k} + \delta(u_i, u_k) \end{cases}$$
 cube diagonal:
no indels
face diagonal:
one indel
Lattice edge:
two indels

• $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length n, the run time is $7n^3$; O(n^3)
- For *k* sequences, build a *k*-dimensional table, with run time $(2^k-1)(n^k)$; $O(2^kn^k)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to *k* sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C y: AC-GC-GAG z: GCCGC-GAG

Induces:

x: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG

Inverse Problem: Do Pairwise Alignments imply a Multiple Alignment?

Given 3 arbitrary pairwise alignments:

x: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG

Can we construct a multiple alignment that induces them?

NOT ALWAYS

Why? Because pairwise alignments may be arbitraily inconsistent

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

Can *not* combine pairwise alignments

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences
- Are we stuck, or is there some other trick?

Multiple Alignment using Profile Scores

	-	Α	G	G	С	Т	Α	Т	С	Α	С	С	Т	G
	Т	Α	G	-	С	Т	Α	С	С	Α	-	-	-	G
	С	Α	G	-	С	Т	Α	С	С	Α	-	-	-	G
	С	Α	G	-	С	Т	Α	Т	С	Α	С	-	G	G
	С	Α	G	-	С	Т	Α	Т	С	G	С	-	G	G
A	0	5	0	0	0	0	5	0	0	4	0	0	0	0
С	3	0	0	0	5	0	0	2	5	0	3	1	0	0
G	0	0	5	1	0	0	0	0	0	1	0	0	2	5
Т	1	0	0	0	0	5	0	3	0	0	0	0	1	0
-	1	0	0	4	0	0	0	0	0	0	2	4	2	0

- Thus far we have aligned a **sequence against other sequences**
- Can we align a **sequence against a profile**?
- Can we align a **profile against a profile?**

Aligning alignments

• Given two alignments, can we align them?

- **x** GGGCACTGCAT
- Alignment 1 y GGTTACGTC--
- z GGGAACTGCAG

- Alignment 2 w GGACGTACC--
- v GGACCT----

Aligning alignments

- Given two alignments, can we align them?
- Hint: don't use the sequences... align their profiles
 - **x** GGGCAC=TGCAT
 - y GGTTAC=GTC--
 - z GGGAAC=TGCAG
 - || || | Combined Alignment
 - w GG==ACGTACC--
 - v GG==ACCT----

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of *k* sequences to an alignment of of *k*-1 sequences/profiles. **Repeat**
- This is a heuristic *greedy* method

k

$$\begin{cases} u_1 = ACGTACGTACGT... & u_1 = ACg/tTACg/tTACg/cT... \\ u_2 = TTAATTAATTAA... & u_2 = TTAATTAATTAA... \\ u_3 = ACTACTACTACT... & ... \\ ... & u_k = CCGGCCGGCCGG \\ & u_k = CCGGCCGGCCGGG \\ & u_k = CCGGCCGGCCGGG \\ & u_k = CCGGCCGGCCGG \\ & u_k = CCGGCCGGCCGGC \\ & u_k = CCGGCCGGCCGG \\ & u_k = CCGGC$$

Greedy Approach: Example

• Consider these 4 sequences

- S1: GATTCA
- S2: GTCTGA
- S3: GATATT
- S4: GTCAGC

Scoring Matrix: Match = 1 Mismatch = -1 Indel = -1

• There are
$$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$$
 = 6 possible alignments

52	GTCTGA	5
54	GTCAGC (score = 2)	5
51	<mark>G</mark> AT-TCA	5.
52	G-TCTGA (score = 1)	5
51	GAT-TCA	5

- *s1* GATTCA--
- G-T-CAGC (score = 0)
- s2 G-TCTGA
- s3 **GATAT**-T (score = -1)

s3 **GAT-A**TT

s3 GATAT-T (score = 1) s4 G-TCAGC (score = -1)

Greedy Approach: Example

 s_2 and s_4 are closest; combine:

$$\begin{array}{ccc} s2 & \text{GTCTGA} \\ s4 & \text{GTCAGC} \end{array} \begin{array}{c} s_{2,4} \\ \text{(profile)} \end{array} \end{array} \begin{array}{c} \text{GTCt/aGa/c} \end{array}$$

new set of 3 sequences:

S ₁	GATTCA	
S 3	GATATT	Repeat
<i>S</i> _{2,4}	GTCt/aGa/c	

Greedy Approach: Example

Repeat for $\binom{3}{2}$ = 3 possible alignments

$$s_{2,4}$$
: G-TCtGa
(score = 2 - 2 + 2 - 2 + 1 - 1 + 1 = 1)

$$s_3$$
: GATAT-T
 $s_{2,4}$: G-TCtGa
(score = 2 - 2 + 2 - 2 + 1 - 1 - 1 = -1)

Progressive Alignment

- *Progressive alignment* is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
 - Gaps in consensus string are permanent
 - Use profiles to compare sequences
- CLUSTAL

ClustalW (Clustal Omega)

- Popular multiple alignment tool commonly used today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
 - 1.) Construct pairwise alignments
 - 2.) Build Guide Tree
 - 3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence against each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

$$v_1$$
 v_2
 v_3
 v_4
 v_1
 \cdot
 v_2
 \cdot .17
 v_3
 \cdot .87
 \cdot .28
 v_4
 \cdot .59
 \cdot .33
 \cdot .62
 $-$

 (.17 means 17 % identical)

Step 2: Guide Tree

- Create Guide Tree using the similarity matrix
 - ClustalW uses the neighbor-joining method (we will discuss this later in the course, in the section on clustering)
 - Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

FOS_RAT FOS_MOUSE FOS_CHICK FOSB_MOUSE FOSB_HUMAN

Dots and stars show how well-conserved a column is.