Neighbor Joining Algorithm:

Given: An $n \times n$ distance matrix D

Find: Unrooted Phylogenetic T with branch lengths. If D is additive, then $d_T(i,j) = D[i,j]$ for all $1 \le i, j \le n$. Otherwise, $d_T(i,j) \approx D[i,j]$

Terminology Given $n \times n$ distance matrix D:

- Define $u_i = \sum_{k=1}^n D[C_i, C_k]$
- Define $S_D(C_i, C_j) = (n-2)D[C_i, C_j] u_i u_j$

Algorithm Sketch

Initialization:

- Form n clusters $\{C_1, C_2, ..., C_n\}$, one for each species.
- Define tree T to be the set of leaf nodes, one per species.

Iteration: (*D* is currently $m \times m$)

- Pick $C_x, C_y = argmin_{i,j}S_D[C_i, C_j]$
- Merge C_x and C_y into new node (C_x, C_y) in T.
- Assign length $\frac{1}{2}(D[C_x, C_y] + \frac{1}{(m-2)}(u_x u_y))$ to edge $(C_x, (C_x, C_y))$
- Assign length $\frac{1}{2}(D[C_x, C_y] + \frac{1}{(m-2)}(u_y u_x))$ to edge $(C_y, (C_x, C_y))$
- Remove rows and columns from D corresponding to C_x and C_y .
- Add row and column to D for new vertex (C_x, C_y) .
- Set $D((C_x, C_y), C_z) = \frac{1}{2}(D[C_x, C_z] + D[C_y, C_z] D[C_x, C_y])$ for all remaining clusters C_z .

Termination:

• When two clusters C_x and C_y remain, join them with an edge of length $D[C_x, C_y]$

Practice: Use the Neighbor Joining Algorithm to build the tree for the following distance matrix:

	Α	В	\mathbf{C}	D
Α	0	3	4	3
В	3	0	4	5
\mathbf{C}	4	4	0	1
D	3	5	1	0