
CS342: Bioinformatics Spring 2020

Problem Set 1: Exact Pattern Matching

Handed out Friday, January 24. Due at the start of class Monday, February 3.

Homework Information: Some of the problems are probably too long to attempt the night before
the due date, so plan accordingly. No late homework will be accepted. You must cite any sources
used outside of the course materials and textbook, including anyone you discussed the problems
with.

1. (2 pts) Construct a suffix tree for the string CACATGCAC$. If you wish, you may write code
to do this, but it is not required. You are welcome to do this by hand. If you write code for
this, please email me a copy of your code. If you do this by hand, please show all intermediate
steps.

2. (2 pts) Construct the pattern repeat table T as used by the Knuth-Morris-Pratt algorithm for
the string CATCATCAG.

3. (6 pts) Given a long nucleotide sequence of length n, we want to find the number of occurrences
of a given l-mer of arbitrary length m.

a. What would be the appropriate data structure - Hash-table or Suffix tree?

b. Design an efficient algorithm for this problem using the data structure chosen in (a).
Note: The running time should be independent of the length of the nucleotide sequence.

c. What is the time complexity for the query search?

4. (4 pts) Often times when analyzing DNA sequencing reads, we’ll want to find sets of reads that
“overlap” each other. Overlap here means that some suffix of one read matches some prefix
of another read. The longer the overlap, the more likely it is that the pair of reads originated
from the same region in the genome. For example the strings ACGTTCGT and CGTTCGTA
have a large overlap of 7 characters (underline). Describe an algorithm that uses a suffix tree
that solves the following computational problem.

Input: Two strings s = s1s2...sn and t = t1t2...tm.

Output: The starting index of all suffixes of s that match some prefix of t.

What is the asymptotic runtime of your algorithm? You may assume the use of Ukkonen’s
algorithm for building the suffix tree.

5. (6 pts) Boyer-Moore Algorithm. Boyer-Moore is another algorithm for exact pattern matching.
Boyer-Moore can be implemented to run in O(m + n). We won’t go into Boyer-Moore in
detail. Instead, here are some of the key ideas behind the algorithm.

• We will move the pattern p along text t from the left-to-right (as done in KMP), but at
each location where we put the pattern, we will compare p and t right-to-left.

• Boyer-Moore has two different rules for shifting the pattern by more than 1 character at
a time. These heuristics will guarantee that no match will be missed, but they may not
always apply. Whichever shift is the largest is the one used. If you are curious about
these heuristics then check out this http://www.cs.jhu.edu/~langmea/resources/

lecture_notes/04_boyer_moore_v2.pdf, but you don’t need to know them for this
problem.

1

http://www.cs.jhu.edu/~langmea/resources/lecture_notes/04_boyer_moore_v2.pdf
http://www.cs.jhu.edu/~langmea/resources/lecture_notes/04_boyer_moore_v2.pdf


CS342: Bioinformatics Spring 2020

Download the zip file Boyer-Moore.zip from Moodle required for this problem. Make sure to
unzip this file to obtain three files: compareMatching.py, chr19.fasta and Alu.fasta. The
compareMatching.py file contains Python code that runs the Boyer-Moore algorithm already.
Take a quick look through the code, but again, you don’t need to understand how Boyer-
Moore works. You will be completing two functions in this code to be able to compare Boyer-
Moore to the brute force algorithm and counting how many individual character comparisons
each algorithm does. Once this is done, you’ll run the code using chromosome 19 from the
human reference genome and looking for a particular Alu sequence (https://en.wikipedia.
org/wiki/Alu_element)(a particular sequence of DNA that appears many times in primate
genomes and has been implicated in some human diseases).

Your Task

1. Look through the code in compareMatching.py and trying running it to see what hap-
pens.

2. Finish implementing the following two functions: naive and read single fasta. Com-
plete specifications on these functions are included in the comments in the code.

For the Naive algorithm you don’t need to consider capitalization. So for example, g
should match to G. When writing the code to read FASTA files, make sure to convert
all characters of the resulting strings to upper or lower case. The reference genome uses
both cases, but we don’t want to use that information right now. You’ll need to do this
for how Boyer-Moore is currently written.

3. Make sure your code is working correctly by modifying the test case located in the main

function. (For comparison, my naive algorithm did 24 comparisons on the original test
case and only 10 comparisons using the Boyer-Moore algorithm.)

4. Run your code on the real data by uncommenting the second section of the main function.
NOTE: Even though we are only running on chromosome 19, your code WILL NOT
RUN INSTANTANEOUSLY. My code took about 8 minutes to run on my laptop.

5. Turn in the following: (1) The number of comparisons done by both the naive algorithm
and the Boyer-Moore algorithm on the real data. (2) The code for only your completed
naive and read single fasta function. Do this by printing out a hard copy of these
two functions and including it with your written homework submission. DO NOT turn
in the entire python file.

2

https://en.wikipedia.org/wiki/Alu_element
https://en.wikipedia.org/wiki/Alu_element

