Problem Set 4: Assembly

Handed out Monday, March 23. Due at the start of class Friday, March 27.
Homework Information: Please upload a PDF of your solutions to Moodle by 2pm central time. If you write your solutions by hand, use an app like Adobe Scan to take a picture of it and turn it into a PDF.

1. (4 pts) In a Sequencing By Hybridization study the following spectrum of 3-mers is collected: $S=\{$ 'aca', 'att', 'cat', 'ctg', 'ctt', 'gct', 'tct', 'tga', 'tgc', 'ttc', 'ttg', 'ttt'\}
(a) Draw the Hamiltonian (overlap) graph for S .
(b) Draw the Eulerian (De Bruijn) graph for S.
(c) Give all possible DNA sequences whose spectrum is S. (Hint: Find all Eulerian paths in the De Bruijn graph.)
2. (4 pts) A shortest superstring is the minimum length string that contains, as a substring, all strings from a given input set. A k-mer is a k-length substring (k consecutive elements) of a larger string. In the following questions "digit" refers to an alphabet of the base 10 integers $\{0,1,2,3,4,5,6,7,8,9\}$.
(a.) What is the minimum length of the shortest superstring of a set of n, 2-digit integers?
(b.) What is the minimum length of the shortest superstring of a set of n, 3 -digit integers?
(c.) What is the maximum number of unique k-mers in an n-digit string?
3. (2 pts) Given the following genome: CATACCGCATAC and let $k=5$.
(a) List all k-mers of the genome.
(b) Draw the De Bruijn graph.
