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Graphs: Topological Sort
Chapter 3 (KT)
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Graph Search Algorithms

BFS and DFS almost the same for directed and undirected graphs

BFS on directed graphs: still O(m + n)

• It is possible for node s to have a path to a node t even though 
t has no path s

• Computing the set of all nodes t with the property that s has a 
path to t

DFS on directed graphs: still O(m + n)

• At node u, recursively launches depth-first search, in order, for 
each node to which u has an edge



Strong Connectivity (Directed Graphs)
Def.  Node u and v are mutually reachable if there is a path from u to v 
and also a path from v to u.

Def.  A directed graph is strongly connected if every pair of nodes is 
mutually reachable.

Lemma.  Let s be any node.  G is strongly connected iff every node is 
reachable from s, and s is reachable from every node.

• Pf.   Follows from definition.
• Pf.   Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.   ▪

s

v

u

ok if paths overlap
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Strong Connectivity:  Algorithm
Theorem.  Can determine if G is strongly connected in O(m + n) 
time.

Pf.

• Pick any node s.

• Run BFS from s in G.

• Run BFS from s in Grev.

• Return true iff all nodes reached in both BFS executions.

• Correctness follows immediately from previous lemma.  

reverse orientation of every edge in G

strongly connected not strongly connected 4



Directed Acyclic Graphs

Def.  An DAG is a directed graph that contains no directed cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj.

Def.  A topological order of a directed graph G = (V, E) is an 
ordering of its nodes as v1, v2, …, vn so that for every edge (vi, vj) 
we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

5



Precedence Constraints
Precedence constraints.  Edge (vi, vj) 
means task vi must occur before vj.

Applications.

• Course prerequisite graph:  course 
vi must be taken before vj.

• Compilation:  module vi must be 
compiled before vj. Pipeline of 
computing jobs:  output of job vi

needed to determine input of job 
vj.
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Directed Acyclic Graphs
Lemma.  If G has a topological order, then G is a DAG.

Pf.  (by contradiction)

• Suppose that G has a topological order v1, …, vn and that G 
also has a directed cycle C.  Let's see what happens.

• Let vi be the lowest-indexed node in C, and let vj be the node 
just before vi; thus (vj, vi) is an edge.

• By our choice of i, we have i < j.

• On the other hand, since (vj, vi) is an edge and v1, …, vn is a 
topological order, we must have j < i, a contradiction.  

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C
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Directed Acyclic Graphs
Lemma.  If G is a DAG, then G has a node with no incoming edges.

Pf.  (by contradiction)
• Suppose that G is a DAG and every node has at least one incoming 

edge.  Let's see what happens.
• Pick any node v, and begin following edges backward from v.  Since 

v has at least one incoming edge (u, v) we can walk backward to u.
• Then, since u has at least one incoming edge (x, u), we can walk 

backward to x.
• Repeat until we visit a node, say w, twice.
• Let C denote the sequence of nodes encountered between 

successive visits to w.  C is a cycle.   

w x u v
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Directed Acyclic Graphs
Lemma.  If G is a DAG, then G has a topological ordering.

Pf.  (by induction on n)

• Base case:  true if n = 1.

• Given DAG on n > 1 nodes, find a node v with no incoming edges.

• G - { v } is a DAG, since deleting v cannot create cycles.

• By inductive hypothesis, G - { v } has a topological ordering.

• Place v first in topological ordering; then append nodes of G - { v } in 
topological order. This is valid since v has no incoming edges.   

DAG

v
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v1

Topological Ordering Algorithm:  
Example

Topological order:  

v2 v3

v6 v5 v4

v7 v1
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v2

Topological Ordering Algorithm:  
Example

Topological order:  v1

v2 v3

v6 v5 v4

v7
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v3

Topological Ordering Algorithm:  
Example

Topological order:  v1, v2

v3

v6 v5 v4

v7
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v4

Topological Ordering Algorithm:  
Example

Topological order:  v1, v2, v3

v6 v5 v4

v7
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v5

Topological Ordering Algorithm:  
Example

Topological order:  v1, v2, v3, v4

v6 v5

v7
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v6

Topological Ordering Algorithm:  
Example

Topological order:  v1, v2, v3, v4, v5

v6

v7
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v7

Topological Ordering Algorithm:  
Example

Topological order:  v1, v2, v3, v4, v5, v6

v7
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Topological order:  v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Topological Ordering Algorithm:  
Example



Topological Sorting Algorithm:  
Running Time

Theorem.  Algorithm finds a topological order in O(m + n) time.

Pf.  

• Maintain the following information:

– count[w] = remaining number of incoming edges

– S = set of remaining nodes with no incoming edges

• Initialization:  O(m + n) via single scan through graph.

• Update:  to delete v

– remove v from S

– decrement count[w] for all edges from v to w, and add 
w to S if count[w] hits 0

– this is O(1) per edge  
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