
COMP 355
Advanced Algorithms

1

Graphs: Topological Sort
Chapter 3 (KT)

2

Graph Search Algorithms

BFS and DFS almost the same for directed and undirected graphs

BFS on directed graphs: still O(m + n)

• It is possible for node s to have a path to a node t even though
t has no path s

• Computing the set of all nodes t with the property that s has a
path to t

DFS on directed graphs: still O(m + n)

• At node u, recursively launches depth-first search, in order, for
each node to which u has an edge

Strong Connectivity (Directed Graphs)
Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A directed graph is strongly connected if every pair of nodes is
mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

• Pf.  Follows from definition.
• Pf.  Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

ok if paths overlap

3

Strong Connectivity: Algorithm
Theorem. Can determine if G is strongly connected in O(m + n)
time.

Pf.

• Pick any node s.

• Run BFS from s in G.

• Run BFS from s in Grev.

• Return true iff all nodes reached in both BFS executions.

• Correctness follows immediately from previous lemma.

reverse orientation of every edge in G

strongly connected not strongly connected 4

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological order of a directed graph G = (V, E) is an
ordering of its nodes as v1, v2, …, vn so that for every edge (vi, vj)
we have i < j.

a DAG a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

5

Precedence Constraints
Precedence constraints. Edge (vi, vj)
means task vi must occur before vj.

Applications.

• Course prerequisite graph: course
vi must be taken before vj.

• Compilation: module vi must be
compiled before vj. Pipeline of
computing jobs: output of job vi

needed to determine input of job
vj.

6

Directed Acyclic Graphs
Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

• Suppose that G has a topological order v1, …, vn and that G
also has a directed cycle C. Let's see what happens.

• Let vi be the lowest-indexed node in C, and let vj be the node
just before vi; thus (vj, vi) is an edge.

• By our choice of i, we have i < j.

• On the other hand, since (vj, vi) is an edge and v1, …, vn is a
topological order, we must have j < i, a contradiction.

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

7

Directed Acyclic Graphs
Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
• Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.
• Pick any node v, and begin following edges backward from v. Since

v has at least one incoming edge (u, v) we can walk backward to u.
• Then, since u has at least one incoming edge (x, u), we can walk

backward to x.
• Repeat until we visit a node, say w, twice.
• Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle.

w x u v

8

Directed Acyclic Graphs
Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

• Base case: true if n = 1.

• Given DAG on n > 1 nodes, find a node v with no incoming edges.

• G - { v } is a DAG, since deleting v cannot create cycles.

• By inductive hypothesis, G - { v } has a topological ordering.

• Place v first in topological ordering; then append nodes of G - { v } in
topological order. This is valid since v has no incoming edges.

DAG

v

9

v1

Topological Ordering Algorithm:
Example

Topological order:

v2 v3

v6 v5 v4

v7 v1

10

v2

Topological Ordering Algorithm:
Example

Topological order: v1

v2 v3

v6 v5 v4

v7

11

v3

Topological Ordering Algorithm:
Example

Topological order: v1, v2

v3

v6 v5 v4

v7

12

v4

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3

v6 v5 v4

v7

13

v5

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3, v4

v6 v5

v7

14

v6

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3, v4, v5

v6

v7

15

v7

Topological Ordering Algorithm:
Example

Topological order: v1, v2, v3, v4, v5, v6

v7

16

Topological order: v1, v2, v3, v4, v5, v6, v7.

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

17

Topological Ordering Algorithm:
Example

Topological Sorting Algorithm:
Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

• Maintain the following information:

– count[w] = remaining number of incoming edges

– S = set of remaining nodes with no incoming edges

• Initialization: O(m + n) via single scan through graph.

• Update: to delete v

– remove v from S

– decrement count[w] for all edges from v to w, and add
w to S if count[w] hits 0

– this is O(1) per edge
18

