
COMP 355
Advanced Algorithms

COMP 355: Advanced Algorithms 1

Asymptotics

COMP 355: Advanced Algorithms 2

Example Problem

Use mathematical induction to show that when
n is an exact power of 2, the solution of the
recurrence

𝑇 𝑛 = ቐ
2, 𝑖𝑓 𝑛 = 2,

2𝑇
𝑛

2
+ 𝑛, 𝑖𝑓 𝑛 = 2𝑘 , 𝑓𝑜𝑟 𝑘 > 1

is 𝑇 𝑛 = 𝑛 lg 𝑛

COMP 355: Advanced Algorithms 3

Asymptotic Analysis

Asymptotic analysis is based on two simplifying
assumptions

• Large input sizes: We are most interested in how
the running time grows for large values of n.

• Ignore constant factors: The actual running time
of the program depends on various constant
factors in the implementation (coding tricks,
optimizations in compilation, speed of the
underlying hardware, etc). Therefore, we will
ignore constant factors.

COMP 355: Advanced Algorithms 4

Large Input Sizes

T1(n) = n3

T2(n) = 100n

As input sizes grow, the performance of the asymptotically
poorer algorithm degrades much more rapidly.

COMP 355: Advanced Algorithms 5

Other Asymptotic Forms

• Ω (“big-omega”),

• Θ (“theta”),

• o (“little-oh”),

• ω (“little-omega”)

COMP 355: Advanced Algorithms 6

Asymptotic Notation

• Asymptotic notation - represents a function by
its fastest growing term and ignores constant
factors

• Example: T(n) = 13n3 + 5n2 −17n + 16

– As n becomes large, the 13n3 term dominates the
others.

– Running Time grows “on the order of” n3.

– 𝑇 𝑛 ∈ Θ (𝑛3)

COMP 355: Advanced Algorithms 7

Formal Definition of Θ

• Intuitively, what we want to say with “𝑓 𝑛 𝜖 Θ(𝑔 𝑛)”
is that f(n) and g(n) are asymptotically equivalent. (same
growth rates for large n)

• Example:
4n2, (8n2 + 2n−3), (𝑛2/5 + 𝑛 − 10 log 𝑛), and n(n − 3)
are all intuitively asymptotically equivalent, since as n
becomes large, the dominant (fastest growing) term is
some constant times n2

COMP 355: Advanced Algorithms 8

Example

Consider the function f(n) = 8n2 + 2n − 3.

Keep the largest term and throw away the
constants → 𝑓 𝑛 ∈ Θ(𝑛2)

Need to show that

1. 𝑓 𝑛 grows asymptotically at least as fast as
𝑛2

2. 𝑓 𝑛 grows no faster asymptotically than 𝑛2

COMP 355: Advanced Algorithms 9

O-notation and Ω-notation

• O-notation: asymptotic upper bounds

Definition: Given any function 𝑔 𝑛 ,

O(𝑔 𝑛) = {𝑓 𝑛 | there exist positive constants c and 𝑛0 such

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑛0

• Ω-notation: asymptotic lower bounds

Definition: Given any function 𝑔 𝑛 ,

Ω(𝑔 𝑛) = {𝑓 𝑛 | there exist positive constants c and 𝑛0 such

that 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 for all 𝑛 ≥ 𝑛0

COMP 355: Advanced Algorithms 10

Example

𝑓 𝑛 = 3𝑛2 + 4n ∈ Θ 𝑛2

• 𝑓 𝑛 not in Θ 𝑛 or Θ 𝑛3

• 𝑓 𝑛 ∈ 𝑂 𝑛2 𝑎𝑛𝑑 𝑖𝑛 ∈ 𝑂 𝑛3 , not in O 𝑛

• 𝑓 𝑛 ∈ Ω 𝑛2 𝑎𝑛𝑑 𝑖𝑛 ∈ Ω 𝑛 , not in Ω 𝑛3

COMP 355: Advanced Algorithms 11

Graph Depictions

COMP 355: Advanced Algorithms 12

o-notation
• Upper bound provided by O-notation may or may

not be asymptotically tight
– 2n2 = O(n2) is tight; 2n = O(n2) is not

• Use o-notation (little-o) to denote an upper
bound that is not asymptotically tight

Definition:
o(𝑔 𝑛) = {𝑓 𝑛 | for any positive constant c > 0, there exists a

constant 𝑛 ≥ 𝑛0 such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑛0}

Example:
2n = o(n2), but 2n2 ≠ o(n2)

COMP 355: Advanced Algorithms 13

ω-notation
• Lower bound provided by Ω-notation may or

may not be asymptotically tight

• Use ω-notation (little-omega) to denote a
lower bound that is not asymptotically tight

Definition:
ω(𝑔 𝑛) = {𝑓 𝑛 | for any positive constant c > 0, there exists

a constant 𝑛0 ≥ 0 such that 0 ≤ 𝑐𝑔 𝑛 < 𝑓 𝑛 for all 𝑛 ≥ 𝑛0}

Example:
n2/2 = ω(n), but n2/2 ≠ ω(n2)

COMP 355: Advanced Algorithms 14

Properties
• Transitivity.

– If f = O(g) and g = O(h) then f = O(h).
– If f = (g) and g = (h) then f = (h).
– If f = (g) and g = (h) then f = (h).
– If f = o(g) and g = o(h) then f = o(h).
– If f = ω (g) and g = ω (h) then f = ω(h).

• Additivity.
– If f = O(h) and g = O(h) then f + g = O(h).
– If f = (h) and g = (h) then f + g = (h).
– If f = (h) and g = (h) then f + g = (h).

COMP 355: Advanced Algorithms 15

L’Hôpital’s rule

COMP 355: Advanced Algorithms 16

Exponentials and Logarithms

• Polynomials always grow more slowly than exponentials

• Logarithmic powers grow more slowly than any polynomial

17

Practice

Work in groups:

In each case, put the two functions in increasing order of
asymptotic growth rate. That is, indicate whether f ≺ g
(meaning that f(n) is o(g(n))), g ≺ f (meaning that f(n) is
ω(g(n))) or f ≈ g (meaning that f(n) is (g(n))).

