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Asymptotics
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Example Problem

Use mathematical induction to show that when 
n is an exact power of 2, the solution of the 
recurrence

𝑇 𝑛 = ቐ
2, 𝑖𝑓 𝑛 = 2,

2𝑇
𝑛

2
+ 𝑛, 𝑖𝑓 𝑛 = 2𝑘 , 𝑓𝑜𝑟 𝑘 > 1

is 𝑇 𝑛 = 𝑛 lg 𝑛
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Asymptotic Analysis

Asymptotic analysis is based on two simplifying 
assumptions

• Large input sizes: We are most interested in how 
the running time grows for large values of n.

• Ignore constant factors: The actual running time 
of the program depends on various constant 
factors in the implementation (coding tricks, 
optimizations in compilation, speed of the 
underlying hardware, etc). Therefore, we will 
ignore constant factors.
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Large Input Sizes

T1(n) = n3

T2(n) = 100n

As input sizes grow, the performance of the asymptotically 
poorer algorithm degrades much more rapidly.



COMP 355: Advanced Algorithms 5

Other Asymptotic Forms

• Ω (“big-omega”),  

• Θ (“theta”), 

• o (“little-oh”),

• ω (“little-omega”)
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Asymptotic Notation

• Asymptotic notation - represents a function by 
its fastest growing term and ignores constant 
factors

• Example: T(n) = 13n3 + 5n2 −17n + 16

– As n becomes large, the 13n3 term dominates the 
others.

– Running Time grows “on the order of” n3. 

– 𝑇 𝑛 ∈ Θ (𝑛3)
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Formal Definition of Θ

• Intuitively, what we want to say with “𝑓 𝑛 𝜖 Θ(𝑔 𝑛 )” 
is that f(n) and g(n) are asymptotically equivalent. (same 
growth rates for large n)

• Example: 
4n2,  (8n2 + 2n−3), (𝑛2/5 + 𝑛 − 10 log 𝑛), and n(n − 3)
are all intuitively asymptotically equivalent, since as n 
becomes large, the dominant (fastest growing) term is 
some constant times n2
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Example

Consider the function f(n) = 8n2 + 2n − 3.

Keep the largest term and throw away the 
constants → 𝑓 𝑛 ∈ Θ(𝑛2)

Need to show that

1. 𝑓 𝑛 grows asymptotically at least as fast as 
𝑛2

2. 𝑓 𝑛 grows no faster asymptotically than 𝑛2
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O-notation and Ω-notation

• O-notation: asymptotic upper bounds

Definition:  Given any function 𝑔 𝑛 ,

O(𝑔 𝑛 ) = {𝑓 𝑛 | there exist positive constants c and 𝑛0 such 

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑛0

• Ω-notation: asymptotic lower bounds

Definition:  Given any function 𝑔 𝑛 ,

Ω(𝑔 𝑛 ) = {𝑓 𝑛 | there exist positive constants c and 𝑛0 such 

that 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓 𝑛 for all 𝑛 ≥ 𝑛0
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Example

𝑓 𝑛 = 3𝑛2 + 4n ∈ Θ 𝑛2

• 𝑓 𝑛 not in Θ 𝑛 or Θ 𝑛3

• 𝑓 𝑛 ∈ 𝑂 𝑛2 𝑎𝑛𝑑 𝑖𝑛 ∈ 𝑂 𝑛3 , not in O 𝑛

• 𝑓 𝑛 ∈ Ω 𝑛2 𝑎𝑛𝑑 𝑖𝑛 ∈ Ω 𝑛 , not in Ω 𝑛3
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Graph Depictions
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o-notation
• Upper bound provided by O-notation may or may 

not be asymptotically tight
– 2n2 = O(n2) is tight; 2n = O(n2) is not

• Use o-notation (little-o) to denote an upper 
bound that is not asymptotically tight

Definition: 
o(𝑔 𝑛 ) = {𝑓 𝑛 | for any positive constant c > 0, there exists a 

constant 𝑛 ≥ 𝑛0 such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔 𝑛 for all 𝑛 ≥ 𝑛0}

Example:
2n = o(n2), but 2n2 ≠ o(n2)
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ω-notation
• Lower bound provided by Ω-notation may or 

may not be asymptotically tight

• Use ω-notation (little-omega) to denote a 
lower bound that is not asymptotically tight

Definition: 
ω(𝑔 𝑛 ) = {𝑓 𝑛 | for any positive constant c > 0, there exists 

a constant 𝑛0 ≥ 0 such that 0 ≤ 𝑐𝑔 𝑛 < 𝑓 𝑛 for all 𝑛 ≥ 𝑛0}

Example:
n2/2 = ω(n), but n2/2 ≠ ω(n2)
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Properties
• Transitivity.

– If f = O(g) and g = O(h) then f = O(h).
– If f = (g) and g = (h) then f = (h). 
– If f = (g) and g = (h) then f = (h).
– If f = o(g) and g = o(h) then f = o(h).
– If f = ω (g) and g = ω (h) then f = ω(h). 

• Additivity.
– If f = O(h) and g = O(h) then f + g = O(h). 
– If f = (h) and g = (h) then f + g = (h).
– If f = (h) and g = (h) then f + g = (h).
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L’Hôpital’s rule
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Exponentials and Logarithms

• Polynomials always grow more slowly than exponentials

• Logarithmic powers grow more slowly than any polynomial
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Practice

Work in groups:

In each case, put the two functions in increasing order of 
asymptotic growth rate. That is, indicate whether f ≺ g 
(meaning that f(n) is o(g(n))), g ≺ f (meaning that f(n) is 
ω(g(n))) or f ≈ g (meaning that f(n) is (g(n))).


