COMP 355
Advanced Algorithms

Minimizing Lateness &
Huffman Encoding

G

Rhodes College

1848 —

Scheduling to Minimizing Lateness

Minimizing lateness problem.
— Single resource processes one job at a time.
— Job j requires t; units of processing time and is due at time d..
— Ifjstarts at time s, it finishes at time f; =5, + t;.
— Lateness: /; = max {0, fj -d, }.
— Goal: schedule all jobs to minimize maximum lateness L = max ;.

Ex:
1] 21 3 5
68991415

lateness = 2 lateness = O max lateness = 6

| | |
d;=9 d,=8 dg =15 d, =6 d, = 14 d,=9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

e [Shortest processing time first] Consider jobs in
ascending order of processing time t;.

e [Earliest deadline first] Consider jobs in ascending
order of deadline d..

* [Smallest slack] Consider jobs in ascending order of
slack d; - t;.

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

* [Shortest processing time first] Consider jobs in
ascending order of processing time t;.
1 10 counterexample
100 10

* [Smallest slack] Consider jobs in ascending order of
slack d; - t;.

counterexample

Minimizing Lateness: Greedy Algorithms

Greedy algorithm. Earliest deadline first.

Sort n jobs by deadline so that 4, < 4d, < .. £d

n

t <« 0

for j =1 ton
Assign job j to interval [t, t + t,]
s; < t, £, « t + t,
t < t + ¢t

output intervals [s;, £,]

1]2[3 /4|5 6]

5 20104 3 o

6 8 9 9 14 15
J max lateness = 1

|
d, =6 d,=8 d;=9 d,=9 d, =14 de = 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Minimizing Lateness: No ldle Time

Observation. There exists an optimal schedule with no idle
time.

1
o
I
(0)]
o
I

= | 12
0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11

Observation. The greedy schedule has no idle time.

Minimizing Lateness: Inversions

Def. Aninversion in schedule S is a pair of jobs i and j such that:
i <jbutjscheduled before i.

inversion

1
.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it
has one with a pair of inverted jobs scheduled consecutively.

Minimizing Lateness: Inversions

Def. Aninversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

inversion

! l f
| O

srerswor | e

fl

Claim. Swapping Two adjacent, inverted jobs reduces the nhumber
of inversions by one and does not increase the max lateness.

Pf. Let ¢ be the lateness before the swap, and let 7 ' be it
afterwards.

— 0=t forall k=1, |
— 1<

— If jobjislate: ¢; = f/-d; (definition)
= f —d, (j finishes at time f.)
< f —d (i<j)
< 7 (definition)

-

Minimizing Lateness: Analysis of
Greedy Algorithm

Theorem. Greedy schedule G is optimal.

Claim: There is an optimal schedule O with no idle time.
* |f O has no inversions, then G = O.

* If O has an inversion, let i-j be an adjacent inversion.

— swapping i and j does not increase the maximum

lateness and strictly decreases the number of
Inversions

— we can continue to do this until there are no more
inversions in O. When that is the case, G = O.

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of
the greedy algorithm, its solution is at least as good as any
other algorithm's.

Exchange argument. Gradually transform any solution to the
one found by the greedy algorithm without hurting its
quality.

Structural. Discover a simple "structural" bound asserting
that every possible solution must have a certain value. Then
show that your algorithm always achieves this bound.

10

Data Storage

Normal encoding:

e ASCIl or Unicode, each character represented by a
fixed-length codeword of bits (8 or 16 bits/character)

* Easy to decode
* Not the most efficient way to store data

Fixed Length Encoding

Suppose we have a 4-character alphabet {a, b, c, d}

Character a b C d

Fixed-Length Codeword | 00 | O1 | 10 | 11

Given the string “abacdaacac”, it would be encoded as

& b a C d a a C d C

oo 01 00 10 11 00 0O 10 00 10

The final 20-character binary string would be
“00010010110000100010”,

But what if we knew the frequency of the characters in
advance?

Variable Length Encoding

Using variable length codes

Character a b C d
Probability 0.60 | 0.05 | 0.30 | 0.05
Variable-Length Codeword 0 110 10 | 111

Given the string “abacdaacac”, it would be encoded as

a b a «c d a a ¢ a c

o 110 0O 10 111 O O 10 O 10
The resulting 17-character string would be “01100101110010010”.
(savings of 3 bits)

Resulting string is 1.5n compared to 2n, for a savings of 25% in
expected encoding length.

n(0.60-1+0.05-3+0.30-2+0.05-3)=n(0.60 +0.15 + 0.60 + 0.15) = 1.5n.

Prefix Codes

How to decode variable-length
codes?

Character

Probability
Variable-Length Codeword

0.60

0.05
110

0.30
10

0.05
111

In the variable-length codes given in the example above no codeword
is a prefix of another (very important!)

Observe: If two codewords did share a common prefix, e.g. a - 001
and b - 00101, then when we see 00101, how do we know whether

the first character of the encoded message is “a” or “b”?

Conversely: If no codeword is a prefix of any other, then as soon as we

see a codeword appearing as a prefix in the encoded text, then we

know that we may decode it

Prefix Codes

Mapping of codewords to characters so that no

codeword is a prefix of another.

Character

b

Codeword

110

111

Fig. 25: A tree-representation of a prefix code.

b
110

:Z]
111

Expected Encoding Length

B(T)=n E plx)dr(x).
reC
Optimal Code Generation: Given an alphabet C and the
probabilities p(x) of occurrence for each character x € C,

compute a prefix code T that minimizes the expected length of
the encoded bit-string, B(T).

n = # of characters in the encoded string

Huffman’s Algorithm

We are given the occurrence probabilities for the characters.
Build the tree up from the leaf level.

Take two characters x and y, and “merge” them into a single
super-character called z (prob(z) = prob(x) + prob(y)), which
then replaces x and y in the alphabet.

Continue recursively building the code on the new alphabet,
which has one fewer character.

When done, if codeword for z is 010, then x is 0100 and vy is
0101.

Huffman’s Algorithm

Huffman’s Algorithm

huf fman (char C[], float prob[]) {
for each (x in C) {

add x to Q sorted by prob[x] // add all to priority queue

¥

n = size of C

for (i = 1 to n-1) { // repeat until 1 item in queue
z = new 1lnternal tree node
left[z] = x = extract-min from Q // extract min probabilities
right[z] = y = extract-min from Q
prob[z] = prob[x] + probly] // z’s probability is their sum
insert z into // z replaces x and y

}

return the last element left in (Q as the root

18

Hu”man !o!e !OI'IS!PU!!IOH

Char Freq

Character count in text.

19

utfman Coae Construction

A

31 27

21

Huffman Code Construction

:81:
40 41 :58:

31 27

22

E | 125
113

93

Huffman Code Construction

81
80
76
73
71
65
61

PDW0VZH O |H

58
H | 55

: 81 : 113

40 41 58 55

31 27

126

Huffman Code Construction—

T | 93

81
A | 80
O | 76
I |73
N | 71

S | 65
R | 61

: 81 : /126 \ 113
40 41 61 65 58 55
31 27

144

126
125
113
93
81

Huffman Code Construction

80
76

o> [H |m

73
71

: 81 : /126 \ /144 \ 113
40 41 61 65 71 73 58 55
31 27

Z|H

156

Huffman Code Construction

E | 125
113
T | 93
81

A | 80
O |76

:156:
80 76 ’/81\‘ /126 \ / 144 \ 113
40 41 61 65 71 73 58 55
31 27
26

174

Huffman Code Construction =

126
E | 125
113

T | 93
81

:156: 174
80 76 81 93 /126 \ /144\ 113
40 41 61 65 71 73 58 55
31 27
27

238
174

Huffman Code Construction

144
:156: 174
80 76 81 93 /126\ /144\
40 41 61 65 71 73

126

E | 125
113

270
238

Huffman Code Construction

156

144
126

156 174 270

81 93 126 144

40 41 61 65 71 73

330
270

Huffman Code Construction — 1z

174
156

270

126 144

61 65 71 73

Huffman Code Construction

61

126

65

270

71

144

508

73

125

508
330

270
238

238

113

58 55

31 27

31

156

Huffman Code Construction ——

76

330

40

81

174

41

93

838

61

126

65

270

71

144

508

73

125

838
330
238
113
H
58 55
C U

31 27

32

Huffman Code Construction

33

Huffman Code Construction

Char Freq Fixed Huff
E 125 0000 110
T 93 0001 011
A 80 010 000
@) 76 0011 001
I 73 0100 1011
N 71 0101 1010
S 65 0110 1001
R 61 0111 1000
H 55 1000 1111
L 41 1001 0101
D 40 1010 0100
C 31 1011 11100
U 27 1100 11101

Total 838 4.00 3.62

Huffman’s Algorithm: Analysis

Recall that the cost of any encoding tree Tis B(T)=n) _ p(z)dr().

zeC

Need to show that any tree that differs from the one constructed by
Huffman’s algorithm can be converted into one that is equal to
Huffman’s tree without increasing its cost

The key is showing that the greedy choice is always the proper one to
make (or at least it is as good as any other choice).

Our approach is based a few observations.

1.The Huffman tree is a full binary tree, meaning that every internal
node has exactly two children.

2.The two characters with the lowest probabilities will be siblings at
the maximum depth in the tree.

Huffman’s Algorithm: Analysis

Claim: Consider the two characters, x and y with the
smallest probabilities. Then there is an optimal code
tree in which these two characters are siblings at the

maximum depth in the tree.

- .
C b e | x Y T

Fig. 27: Showing that the lowest probability nodes are siblings at the tree’s lowest level.

Huffman’s Algorithm: Analysis

Claim: Huffman’s algorithm produces an optimal prefix
code tree.

T Yy

Fig. 28: Proving the correctness of Huffman’s algorithm.

Practice

What is the optimal Huffman code for the
following set of frequencies, based on the first 8
Fibonacci numbers?

a:1, b:1, c:2,d:3, e:5, 18, g:13, h:21

