
COMP 355
Advanced Algorithms

1

Minimizing Lateness &
Huffman Encoding



Scheduling to Minimizing Lateness
Minimizing lateness problem.

– Single resource processes one job at a time.

– Job j requires tj units of processing time and is due at time dj.

– If j starts at time sj, it finishes at time fj = sj + tj. 

– Lateness:  j = max { 0,  fj - dj }.

– Goal:  schedule all jobs to minimize maximum lateness L = max j.

Ex:
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Minimizing Lateness:  Greedy Algorithms

Greedy template.  Consider jobs in some order. 

• [Shortest processing time first] Consider jobs in 
ascending order of processing time tj.

• [Earliest deadline first] Consider jobs in ascending 
order of deadline dj.

• [Smallest slack] Consider jobs in ascending order of 
slack dj - tj.
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Greedy template.  Consider jobs in some order. 

• [Shortest processing time first]  Consider jobs in 
ascending order of processing time tj.

• [Smallest slack]  Consider jobs in ascending order of 
slack dj - tj.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1  d2  …  dn

t  0

for j = 1 to n

Assign job j to interval [t, t + tj]

sj  t, fj  t + tj
t  t + tj

output intervals [sj, fj]

Greedy algorithm.  Earliest deadline first.

Minimizing Lateness:  Greedy Algorithms
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Minimizing Lateness: No Idle Time

Observation.  There exists an optimal schedule with no idle 
time.

Observation. The greedy schedule has no idle time.
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Minimizing Lateness: Inversions

Def.  An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Observation.  Greedy schedule has no inversions.

Observation.  If a schedule (with no idle time) has an inversion, it 
has one with a pair of inverted jobs scheduled consecutively.

ijbefore swap
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Def.  An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim.  Swapping two adjacent, inverted jobs reduces the number 
of inversions by one and does not increase the max lateness.

Pf.  Let  be the lateness before the swap, and let  ' be it 
afterwards.

– 'k = k for all k  i, j
– 'i  i

– If job j is late:
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Minimizing Lateness: Analysis of 
Greedy Algorithm

Theorem.  Greedy schedule G is optimal.

Claim: There is an optimal schedule O with no idle time.

• If O has no inversions, then G = O.

• If O has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum 
lateness and strictly decreases the number of 
inversions

– we can continue to do this until there are no more
inversions in O. When that is the case, G = O.
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Greedy Analysis Strategies

Greedy algorithm stays ahead.  Show that after each step of 
the greedy algorithm, its solution is at least as good as any 
other algorithm's. 

Exchange argument.  Gradually transform any solution to the 
one found by the greedy algorithm without hurting its 
quality.

Structural.  Discover a simple "structural" bound asserting 
that every possible solution must have a certain value. Then 
show that your algorithm always achieves this bound.
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Data Storage

Normal encoding:

• ASCII or Unicode, each character represented by a 
fixed-length codeword of bits (8 or 16 bits/character)

• Easy to decode

• Not the most efficient way to store data
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Fixed Length Encoding

Suppose we have a 4-character alphabet {a, b, c, d}

Given the string “abacdaacac”, it would be encoded as

The final 20-character binary string would be 
“00010010110000100010”.

But what if we knew the frequency of the characters in 
advance?



Variable Length Encoding
Using variable length codes

Given the string “abacdaacac”, it would be encoded as

The resulting 17-character string would be “01100101110010010”. 
(savings of 3 bits)

Resulting string is 1.5n compared to 2n, for a savings of 25% in 
expected encoding length.

n(0.60 · 1 + 0.05 · 3 + 0.30 · 2 + 0.05 · 3) = n(0.60 + 0.15 + 0.60 + 0.15) = 1.5n.
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Prefix Codes

How to decode variable-length 

codes?

In the variable-length codes given in the example above no codeword
is a prefix of another (very important!)

Observe:  If two codewords did share a common prefix, e.g. a → 001 
and b → 00101, then when we see 00101, how do we know whether 
the first character of the encoded message is “a” or “b”?

Conversely: If no codeword is a prefix of any other, then as soon as we 
see a codeword appearing as a prefix in the encoded text, then we 
know that we may decode it
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Prefix Codes

Mapping of codewords to characters so that no 
codeword is a prefix of another.
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Expected Encoding Length

Optimal Code Generation: Given an alphabet C and the 
probabilities p(x) of occurrence for each character x ∈ C, 
compute a prefix code T that minimizes the expected length of 
the encoded bit-string, B(T).

n = # of characters in the encoded string
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Huffman’s Algorithm

• We are given the occurrence probabilities for the characters.

• Build the tree up from the leaf level.

• Take two characters x and y, and “merge” them into a single 
super-character called z (prob(z) = prob(x) + prob(y)), which 
then replaces x and y in the alphabet.

• Continue recursively building the code on the new alphabet, 
which has one fewer character.

• When done, if codeword for z is 010, then x is 0100 and y is 
0101.
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Huffman’s Algorithm



Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction 126
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Huffman Code Construction 144
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Huffman Code Construction
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Huffman Code Construction 174
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Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

330 508

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

330
508
FreqChar

270
238

31



Huffman Code Construction
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Huffman Code Construction
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Huffman Code Construction
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Huffman’s Algorithm: Analysis

Recall that the cost of any encoding tree T is 

Need to show that any tree that differs from the one constructed by 
Huffman’s algorithm can be converted into one that is equal to 
Huffman’s tree without increasing its cost

The key is showing that the greedy choice is always the proper one to 
make (or at least it is as good as any other choice).

Our approach is based a few observations. 
1.The Huffman tree is a full binary tree, meaning that every internal 

node has exactly two children. 
2.The two characters with the lowest probabilities will be siblings at 

the maximum depth in the tree. 
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Huffman’s Algorithm: Analysis

Claim: Consider the two characters, x and y with the 
smallest probabilities. Then there is an optimal code 
tree in which these two characters are siblings at the 
maximum depth in the tree.
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Claim: Huffman’s algorithm produces an optimal prefix 
code tree.

Huffman’s Algorithm: Analysis
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Practice

What is the optimal Huffman code for the 
following set of frequencies, based on the first 8 
Fibonacci numbers?

a: 1, b:1, c:2, d:3, e:5, f:8, g:13, h:21


