
COMP 355
Advanced Algorithms

1

Minimizing Lateness &
Huffman Encoding

Scheduling to Minimizing Lateness
Minimizing lateness problem.

– Single resource processes one job at a time.

– Job j requires tj units of processing time and is due at time dj.

– If j starts at time sj, it finishes at time fj = sj + tj.

– Lateness: j = max { 0, fj - dj }.

– Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

2

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

• [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

• [Earliest deadline first] Consider jobs in ascending
order of deadline dj.

• [Smallest slack] Consider jobs in ascending order of
slack dj - tj.

3

Greedy template. Consider jobs in some order.

• [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

• [Smallest slack] Consider jobs in ascending order of
slack dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1  d2  …  dn

t  0

for j = 1 to n

Assign job j to interval [t, t + tj]

sj  t, fj  t + tj
t  t + tj

output intervals [sj, fj]

Greedy algorithm. Earliest deadline first.

Minimizing Lateness: Greedy Algorithms

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

5

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle
time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

6

Minimizing Lateness: Inversions

Def. An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it
has one with a pair of inverted jobs scheduled consecutively.

ijbefore swap

inversion

7

Def. An inversion in schedule S is a pair of jobs i and j such that:
i < j but j scheduled before i.

Claim. Swapping two adjacent, inverted jobs reduces the number
of inversions by one and does not increase the max lateness.

Pf. Let  be the lateness before the swap, and let  ' be it
afterwards.

– 'k = k for all k  i, j
– 'i  i

– If job j is late:

ij

i j

before swap

after swap

n)(definitio

)(

) time at finishes (

n)(definitio

i

ii

iji

jjj

jidf

fjdf

df







−

−=

−=

f'j

fi

inversion

Minimizing Lateness: Inversions

8

Minimizing Lateness: Analysis of
Greedy Algorithm

Theorem. Greedy schedule G is optimal.

Claim: There is an optimal schedule O with no idle time.

• If O has no inversions, then G = O.

• If O has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum
lateness and strictly decreases the number of
inversions

– we can continue to do this until there are no more
inversions in O. When that is the case, G = O.

9

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of
the greedy algorithm, its solution is at least as good as any
other algorithm's.

Exchange argument. Gradually transform any solution to the
one found by the greedy algorithm without hurting its
quality.

Structural. Discover a simple "structural" bound asserting
that every possible solution must have a certain value. Then
show that your algorithm always achieves this bound.

10

11

Data Storage

Normal encoding:

• ASCII or Unicode, each character represented by a
fixed-length codeword of bits (8 or 16 bits/character)

• Easy to decode

• Not the most efficient way to store data

12

Fixed Length Encoding

Suppose we have a 4-character alphabet {a, b, c, d}

Given the string “abacdaacac”, it would be encoded as

The final 20-character binary string would be
“00010010110000100010”.

But what if we knew the frequency of the characters in
advance?

Variable Length Encoding
Using variable length codes

Given the string “abacdaacac”, it would be encoded as

The resulting 17-character string would be “01100101110010010”.
(savings of 3 bits)

Resulting string is 1.5n compared to 2n, for a savings of 25% in
expected encoding length.

n(0.60 · 1 + 0.05 · 3 + 0.30 · 2 + 0.05 · 3) = n(0.60 + 0.15 + 0.60 + 0.15) = 1.5n.

13

14

Prefix Codes

How to decode variable-length

codes?

In the variable-length codes given in the example above no codeword
is a prefix of another (very important!)

Observe: If two codewords did share a common prefix, e.g. a → 001
and b → 00101, then when we see 00101, how do we know whether
the first character of the encoded message is “a” or “b”?

Conversely: If no codeword is a prefix of any other, then as soon as we
see a codeword appearing as a prefix in the encoded text, then we
know that we may decode it

15

Prefix Codes

Mapping of codewords to characters so that no
codeword is a prefix of another.

16

Expected Encoding Length

Optimal Code Generation: Given an alphabet C and the
probabilities p(x) of occurrence for each character x ∈ C,
compute a prefix code T that minimizes the expected length of
the encoded bit-string, B(T).

n = # of characters in the encoded string

17

Huffman’s Algorithm

• We are given the occurrence probabilities for the characters.

• Build the tree up from the leaf level.

• Take two characters x and y, and “merge” them into a single
super-character called z (prob(z) = prob(x) + prob(y)), which
then replaces x and y in the alphabet.

• Continue recursively building the code on the new alphabet,
which has one fewer character.

• When done, if codeword for z is 010, then x is 0100 and y is
0101.

18

Huffman’s Algorithm

Huffman Code Construction

Character count in text.
Freq

125

93

80

76

73

71

61

55

41

40

E

Char

T

A

O

I

N

R

H

L

D

31

27

C

U

65S

19

Huffman Code Construction

C U

31 27

125
Freq

93
80
76
73
71

61
55
41
40

E
Char

T
A
O
I
N

R
H
L
D

31
27

C
U

65S

20

Huffman Code Construction

C U

58

31 27

125
Freq

93
80
76
73
71

61

55
41
40

E
Char

T
A
O
I
N

R

H
L
D

58

65S

31
27

C
U

21

Huffman Code Construction

C U

58

D L

81

31 27

40 41

125
Freq

93

80
76
73
71

61
58
55

E
Char

T

A
O
I
N

R

H

81

65S

41
40

L
D

22

Huffman Code Construction

H

C U

58

113

D L

81

31 27

5540 41

125
Freq

93

80
76
73
71

61

113
E

Char

T

A
O
I
N

R

81

65S

58
55H

23

Huffman Code Construction

R S H

C U

58

113126

D L

81

31 27

5561 6540 41

125

Freq

93

80
76
73
71

113
E

Char

T

A
O
I
N

81

126

61R
65S

24

Huffman Code Construction 126

R S N I H

C U

58

113144126

D L

81

31 27

5571 7361 6540 41

125

Freq

93

80
76

144

113
E

Char

T

A
O

81

73
71

I
N

25

Huffman Code Construction 144

R S N I H

C U

58

113144126

D L

81

156

A O

31 27

5571 7361 6540 41

80 76

126
125

Freq

93

156

113
E

Char

T
81

80
76

A
O

26

Huffman Code Construction

R S N I H

C U

58

113144126

D L

81

156 174

A O T

31 27

5571 7361 6540 41

9380 76

144
126
125

Freq

156

113
E

Char
174

93T
81

27

Huffman Code Construction 174

R S N I

E

H

C U

58

113144126

238

T

D L

81

156 174

A O

80 76

71 7361 6540 41

31 27

55

12593

144
126

238
Freq

156

Char

125
113

E

28

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

238

156

270
Freq

174

Char

144
126

29

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

330

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

270
330
Freq

238

Char

156
174

30

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

330 508

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

330
508
FreqChar

270
238

31

Huffman Code Construction

R S N I

E

H

C U

58

113144126

238
270

330 508

838

T

D L

81

156 174

A O

31 27

5571 7361 65

125

40 41

9380 76

838
FreqChar

330
508

32

Huffman Code Construction

R S N I

E

H

C U

0

0

T

D L

1

0 0

A O

0

11

1

10

0

1

1

1

1

1

1

0

0

0

0

0

1

33

Huffman Code Construction

R S N I

E

H

C U

0

0

T

D L

1

0 0

A O

0

11

1

10

0

1

1

1

1

1

1

0

0

0

0

0

1

125

Freq

93

80

76

73

71

61

55

41

40

E

Char

T

A

O

I

N

R

H

L

D

31

27

C

U

65S

0000

Fixed

0001

010

0011

0100

0101

0111

1000

1001

1010

1011

1100

0110

110

Huff

011

000

001

1011

1010

1000

1111

0101

0100

11100

11101

1001

838Total 4.00 3.62
34

35

Huffman’s Algorithm: Analysis

Recall that the cost of any encoding tree T is

Need to show that any tree that differs from the one constructed by
Huffman’s algorithm can be converted into one that is equal to
Huffman’s tree without increasing its cost

The key is showing that the greedy choice is always the proper one to
make (or at least it is as good as any other choice).

Our approach is based a few observations.
1.The Huffman tree is a full binary tree, meaning that every internal

node has exactly two children.
2.The two characters with the lowest probabilities will be siblings at

the maximum depth in the tree.

36

Huffman’s Algorithm: Analysis

Claim: Consider the two characters, x and y with the
smallest probabilities. Then there is an optimal code
tree in which these two characters are siblings at the
maximum depth in the tree.

37

Claim: Huffman’s algorithm produces an optimal prefix
code tree.

Huffman’s Algorithm: Analysis

38

Practice

What is the optimal Huffman code for the
following set of frequencies, based on the first 8
Fibonacci numbers?

a: 1, b:1, c:2, d:3, e:5, f:8, g:13, h:21

