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ABSTRACT
In this paper, we contrast the resolution and accuracy of
determining recombination boundaries using genotyping ar-
rays compared to high-throughput sequencing. In addition,
we consider the impacts of sequence coverage and genetic
diversity on localizing recombination boundaries. We devel-
oped a hidden Markov model for estimating recombination
breakpoints based on variant observations seen in the read
coverage spanning uniformly sized genomic windows. Our
model includes 36 states representing all combinations of
8 genomes, and estimates a founder mosaic that is consis-
tent with the variants observed in the aligned sequences.
At HMM transition locations we consider the most likely
founder-pair and refine the recombination breakpoints down
to an interval spanning two informative variants. We com-
pare this solution to alternate solutions based on microar-
rays that we have estimated. At 30x coverage the recombi-
nation mapping accuracy far exceeds the resolution attain-
able by any microarray. Even at coverages of 1x and below
we are generally able to estimate recombination breakpoints
with comparable accuracy.
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ENCES –Biology and genetics

Keywords
high-throughput sequencing, hidden Markov model, haplo-
type reconstruction

∗To whom correspondence should be addressed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BCB ’13, September 22 - 25, 2013, Washington, DC, USA
Copyright 2013 ACM 978-1-4503-2434-2/13/09 ...$15.00.

1. INTRODUCTION
High-Throughput Sequencing (HTS) of short reads is rapidly

becoming cost competitive with full-genome genotyping us-
ing microarrays. A key difference between HTS and microar-
ray genotyping is that microarrays sample specific genomic
locations, whereas HTS samples the genome randomly. Cat-
egorizing genetic differences in HTS data requires a database
of known sequence variants, while microarray-based geno-
typing is based on a set of reliable variants that were selected
previously as part of the array’s design. A common applica-
tion of full-genome genotyping is to determine the ancestral
origin of genomic segments arising from recombination. In
this paper, we contrast the resolution and accuracy of de-
termining recombination boundaries using genotyping mi-
croarrays with HTS. In addition, we consider the impacts of
sequence coverage and genetic diversity on localizing recom-
bination boundaries.

We have been monitoring the genomes of a multi-parental
Recombinant Inbred Line (RIL) panel, called the Collabo-
rative Cross (CC)[5] throughout its development. This is
being done to ascertain the level of heterozygosity in var-
ious developing RILs as well as to decrease the number of
generations of inbreeding required to achieve fully inbred an-
imals[17]. We have monitored these genomes using three dif-
ferent genotyping arrays, two of which were designed specif-
ically to be informative for the CC[20, 5]. For each of these
genotyping platforms, algorithms have been designed to as-
sign founders and estimate recombination breakpoints[10,
6]. Versions of these founder assignment algorithms have
been demonstrated to work on a number of different mouse
resources, including the Diversity Outcross (DO) [16] and
other outbred populations.

Recently others have considered using HTS technologies
to determine ancestral origins[13] and have also used sparse
sequence data for this same analysis[15]. Sequencing data
from four pooled samples were used to establish that the ge-
netic variants and haplotypes of commercial outbred mouse
stocks are largely shared with common laboratory strains[19].
We perform a similar analysis with eight-founder CC RILs,
which leverages high-throughput sequencing data for three
CC lines (OR867m532, OR1237m224, and OR3067m352)

ACM-BCB 2013 585



Figure 1: Collaborative Cross breeding scheme.
Each independent CC strain begins with a funnel
breeding stage that mixes eight founders, which are
crossed for two generations, G1 and G2. The lines
are then inbred for at least 20 generations to obtain
recombinant inbred lines. CC lines are regularly
genotyped after their 6th generation of inbreeding to
monitor their residual heterozygosity, detect breed-
ing errors, and to accelerate the inbreeding of se-
lected lines.

that have also been previously genotyped on two of our geno-
typing platforms.

Beissinger et al.[2] addresses determining the necessary
read coverage needed to genotype-by-sequencing in order to
perform Quantitative Trait Loci (QTL) mapping. In our
analysis we perform a similar determination of the read
coverage necessary to map recombination breakpoints and
compare this resolution to that obtained using genotyping
arrays. We do this using the same 3 CC lines mentioned pre-
viously and sampling the reads to simulate various coverage
levels.

2. MATERIALS AND METHODS

2.1 CC Strains
The Collaborative Cross is a multi-parental recombinant

inbred panel derived from a set of eight genetically diverse
inbred laboratory mouse strains. The set of founders con-
sists of five classical inbred strains (A/J, C57BL/6J, 129S1/SvImJ,
NOD/ShiLtJ, NZO/H1LtJ) and three wild-derived inbred
strains (CAST/EiJ, PWK/PhJ, WSB/EiJ). They were cho-
sen to capture a high level of genetic diversity, representing
on average 90% of known genetic variation in laboratory
stocks across all 1-Mb intervals[14]. A single CC strain is
derived from the eight founders through a funnel breeding
scheme that consists of two generations of mixing crosses,
followed by 20 or more generations of inbreeding (Figure 1).
Throughout the development of the CC, we have genotyped
samples of strains at various stages of development using
several different genotyping platforms. These genotyping
platforms were used to track the remaining heterozygosity
as well as the founder contributions at various generations.

Originally, preCC mice[1] were genotyped using the Mouse
Diversity Array[20], which has approximately 500K SNPs at
a cost of more than $500 per sample. To aid the inbreeding
process of the CC, we designed the Mouse Universal Geno-
typing Array (MUGA), a 7,854-marker array based on the
Illumina Infinium platform [5], which costs $100/sample. Fi-
nally, since the cost of genotyping arrays has continued to
decrease, we designed a second generation genotyping ar-
ray called MegaMUGA which contains 77K SNPs, including
those on MUGA, and costs $90/sample. We have genotyped
over 2,800 CC samples using the three genotyping arrays,
and for each of these arrays, we have inferred the genomic
mosaic of the original eight founder genomes[10, 6].

2.2 Sequence Data
Whole-genome sequencing for three extant CC lines was

completed by the Washington University School of Medicine
Genome Sequencing and Analysis Center using Illumina se-
quencing technology with 30x haploid coverage. DNA was
extracted from the spleen of a single male sample from each
of the three extant CC strains. The resulting 100 base pair
paired-end sequence fragments were aligned to a consensus
reference genome using Bowtie (v 2.0.5)[9, 8]. The consen-
sus genome was created by inserting the majority allele of
the 8 CC founders at all known variant positions into the
NCBI37/mm9 mouse genome[4]. The genetic variants were
provided by the Wellcome Trust/Sanger Institute’s Mouse
Genome’s Project[7]. We applied our techniques to these
three extant lines since MUGA and MegaMUGA genotypes
and sequencing data existed for all three samples.

3. APPROACH

3.1 Sequence Similarity Maps
In order to separate the degree to which resolving recom-

bination boundaries depends on sequencing depth versus se-
quence similarity between the two sequences on either side of
the recombination event, we developed a pairwise sequence
similarity map. Sequence similarity varies throughout the
genome and serves as a fundamental limit to our ability to
resolve recombination boundaries. No amount of additional
read coverage can improve the localization of a recombina-
tion breakpoint beyond the resolution determined by a se-
quence similarity map. In order to measure the accuracy of
a given recombination boundary estimate, it is necessary to
factor in the extent to which genomic variations exist near
the region in question. A sequence similarity map provides
such a gauge. It can also be used to normalize accuracy
measures of recombination breakpoint positions.

3.2 HMM Algorithm
We use a Hidden Markov Model (HMM) algorithm to de-

termine the founder mosaic for our sequenced animals. Since
CC animals have eight founders and each loci can be het-
erozygous or homozygous, our HMM has 36 possible states
(8 inbred and 28 founder-pair combinations). To help al-
leviate some of the noise inherent in sequencing data, we
binned the genome into uniform sized genomic windows, so
that each bin would contain sufficient evidence to discrim-
inate between 36 possibilities using primarily biallelic vari-
ants. We then used a standard Viterbi algorithm to solve
for the most likely founder mosaic represented in the HMM
as described below.
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3.2.1 Variants
A database of 65 million variants in 17 laboratory mouse

strains has recently been produced by the Wellcome Trust/Sanger
Institute[7]. They included the eight Collaborative Cross
founder strains. Of these 65M SNPs, 31M high-confidence
SNPs are informative among the eight CC founders. The
majority allele at each of these 31M SNPs was used to con-
struct the consensus genome used for alignment. We further
filtered these down to a subset 29M SNPs such that there
are no unknown genotypes among all eight founders, elimi-
nating any need for imputation.

3.2.2 Emission Probabilities
The aligned reads were then examined at each of these

29M SNP positions and binned using uniform-sized non-
overlapping bins. The bin size is a user specified param-
eter which should be set based on the amount of genetic
diversity between the founders. Unless otherwise specified,
it was set to 1000bp in this paper. Within each bin, emis-
sion probabilities are computed for each of the 28 heterozy-
gous founder-pair combinations and the 8 inbred founders
by counting the number of variants consistent with each of
the 36 possible states. Counts for each of the 36 states were
converted to a likelihood score based on the number of reads
supporting each genotype call, and subsequently adjusted to
compensate for the likelihood of the same counts occurring
by chance as modeled by a binomial distribution. A noise
model of 1 sequencing error per 100 sequenced bases was
assumed, so that the binomial distribution of a homozygous
call is 0.99, while the assumed split for a heterozygous call is
0.495. Three possible probabilities (homozygous for each al-
lele and heterozygous) are calculated at each SNP based on
the number of reads that supports each allele, and applied
appropriately to each bin. The probabilities of all SNPs in
a bin were combined, and then the values are normalized
so that the sum of all probabilities in the 36 states sum to
1. When there are no SNPs or no reads present in a bin,
the emission probabilities are assumed to be equal for all 36
states.

We also reweighted the informativeness of each bin based
on the average number of reads and the total number of
SNPs within each bin modeled as a Poisson distributed ran-
dom variable, as shown in the formulas below, where Ravg is
the average number of reads in all bins, Rstd is the standard
deviation of reads in all bins, and hR is the number of reads
in the current bin. Similarly, Navg is the average, Nstd is
the standard deviation, and hN is the current bin count of
SNPs.

α1 = e
− (hR−Ravg)2

Rstd (1)

α2 = e
− (hN−Navg)2

Nstd (2)

α = min(α1, α2) (3)

Ps′ = Ps ∗ α+
1

36
∗ (1− α) (4)

This was done so that bins with a large number of reads
(typical of highly repetitive regions of the genome) and bins
with a small number of SNPs would not overly influence our
solution. Parameters Ravg, Rdev, Nave and Ndev are based
on the reads and SNPs per bin for each given data set.

3.2.3 Transition Probabilities

The transition probabilities for the HMM are estimated
based on observed recombinations seen in previous MUGA
haplotype reconstructions for 350 unique, emerging CC lines[18].
There are four classes of transitions that can occur between
states, as shown in Figure 2. The most likely class of transi-
tion is that the state remains the same between two adjacent
bins. This is because over a genome of about 2,470 Mb,
we observed an average of 100 recombinations among our
350 genotyped CC samples when founders were assigned us-
ing the intensity-based algorithm described by Fu et al.[6].
A similar number of recombinations were found using the
Liu et. al[10] algorithm as reported by Fu et al.[6]. An-
other class of transitions occurs when a recombination on
one chromosome generates a heterozygous state, or when
a recombination on a single chromosome causes a transition
from one heterozygous state to another. The homozygous to
heterozygous transitions appear in two versions: either the
homozygous founder is included in the heterozygous state
(more likely) or the transition from a homozygous to a het-
erozygous state involves a simultaneous transitions on both
chromosomes. The heterozygous to heterozygous states have
two variants as well, such that either 1 or 0 of the founders
remain the same between the two states. Based on the ob-
served recombinations in the CC lines, we calculated the
expected transition probabilities at a specified bin size. We
assumed that 100 bins on average should contain a transi-
tion, and the rest should maintain the same state between
consecutive bins. Therefore, the probability of remaining the
same is (total bins - 100) / total bins. Of the 100 transitions,
we observed that 41.85% of them are between a homozygous
state and a heterozygous state that contained the homozy-
gous state’s founder, 37.14% were between two different ho-
mozygous states, 17.92% were between heterozygous states
that share a founder, and the remaining 2.89% was between
a homozygous state and a heterozygous state with no shared
founder.

3.2.4 Viterbi Solution
We initially assume that all states were equally likely

and set our priors to reflect that. The Viterbi algorithm
then proceeds to find the path maximizing the sum of log-
likelihoods, thus computing the most probable sequence of
founder assignments. This process is repeated for each chro-
mosome independently.

3.3 Refining Recombination Breakpoints
The HMM solution at best determines a recombination

boundary to the resolution of a bin (typically 1Kb). In a
post process, we utilize all informative SNPs between the
most likely two founders identified on each side of the recom-
bination by the HMM solution to refine the recombination
breakpoints down to the distance between two consecutive
informative SNPs. This becomes complicated in regions of
high sequence similarity, leading to regions where the reso-
lution of the recombination boundary depends on the pair of
founders on each side of the event. However, in most cases,
we are able to determine the two informative SNPs between
which the recombination occurs and these SNP positions
are then used to bound the recombination event. Where
these informative SNPs are far apart, areas of uncertainty
are drawn and we assume that the founders are Identical-
By-State (IBS) within the determined interval.

ACM-BCB 2013 587



Figure 2: There are four classes of transitions that
can occur between HMM states. The most likely
transition is to remain the same founder state be-
tween two adjacent bins. In inbred animals, a shared
recombination on both chromosomes generates the
typical homozygous to homozygous transition (A).
Another class of transitions occurs when a recom-
bination on one chromosome transitions a homozy-
gous state to heterozygous state (B), or causes a
transition from one heterozygous state to another
(C). Rare heterozygous to heterozygous transitions
occur as a result of recombinations on both chro-
mosomes (D) and are usually due to a recombina-
tion hotspot. Likewise, rare transitions from het-
erozygous to homozygous states can result from two
aligned but separate recombinations (E).

3.4 Determining Necessary Read Coverage
The most significant variable influencing cost in HTS is

the read coverage. In order to use HTS as a cost-effective
alternative to genotyping arrays in the future, one needs to
determine the necessary read coverage to compute haplotype
reconstructions that are, at a minimum, equivalent in reso-
lution to algorithms based on a fixed marker set. The reso-
lution of array-based methods is a function of marker den-
sity, genetic state, and the informativeness of each marker.
We designed MUGA to be able to resolve recombinations
to within 1Mb on average when the sample was nearly in-
bred. MegaMUGA, was designed to resolve recombinations
to within 160Kb for samples that are highly heterozygous.
To determine the necessary read coverage, we sampled the
reads at various coverage levels, such that if we wanted 2x
coverage, we use about 1/15th of the available reads. In this
way, we sampled the genome at 0.25x, 0.5x, 1x, 4x, and 16x.
Since we randomly decided which reads to keep, each experi-
ment was run 10 times with a different random seed and the
resulting solutions are used in this analysis. For coverage
levels of 1x and above, we used the same size bins (1Kb) as
the full coverage solution. However, in order to maintain a
similar level of evidence per bin at the lower coverage levels,
we used 2Kb bins for the 0.5x coverage and 4Kb bins for the
0.25x coverage.

4. RESULTS

4.1 Founder-pair Resolution
Sequence similarity maps were constructed between all

28 founder pairs. In Figure 3 we show visualizations of
these sequence similarity maps. These images depict the

number of 1000bp bins that have at least one informative
SNP within each 100Kb bin. The sequence similarity map
indicates where in the genome there are few or no infor-
mative SNPs distinguishing a particular founder-pair. The
frequency of informative SNPs in a genomic region places
a fundamental limit on the resolution for which a recom-
bination breakpoint can be mapped using sequence infor-
mation, regardless of read coverage. The density of in-
formative SNPs varies significantly between founder pairs
from the CC. The three wild-derived CC founder strains
(CAST/EiJ, PWK/PhJ, and WSB/EiJ), include many vari-
ants and result in very few regions of ambiguity (areas with
few or no informative SNPs) when they participate in a
founder-pair. However, there is considerable sequence sim-
ilarity among the five classical CC founder strains (A/J,
C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/H1LtJ)
and therefore there are many regions of ambiguity in founder-
pairs involving two classical CC strains. Figure 3 depicts
three sequence-similarity maps, one between two classical
strains, a second between a wild-derived strain and a clas-
sical strain and a third between two wild-derived strains.
Also shown is the distribution of distances between infor-
mative SNPs genome-wide for all 28 founder-pairs, which
peaks at 512 base pairs, thus justifying our choice of bin
size (i.e. most 1000 base pair bins are likely to include a
informative SNP variant between most founder pairs). The
sequence similarity maps also depict regions of the genome
where there are few annotated variants due to lack of se-
quence complexity, such as the large gaps on chromosomes
7, 12, and X. In these regions we would also expect to be
limited in our capabilities to resolve recombination break-
points. These sequence similarity maps are used to assess
the possible localization accuracy of a specific recombina-
tion event as determined by experiments with variable read
coverage.

4.2 Breakpoint Mapping of HTS data
Initially, we will consider the recombination breakpoint

mapping accuracy attainable from the full 30x coverage se-
quence data. Accuracy depends both on sampling density
and the genetic diversity between the founders surrounding
each breakpoint. Our HMM solution pools evidence within
regions of a user specified window size (1000 bases for 30X
coverage) to infer the most likely source of the genome within
a window. HMM transitions, which are suggestive of a re-
combination breakpoint, occur between window boundaries.

4.2.1 Comparison with Refined Breakpoint Solution
We refine our HMM estimates by expanding the region

surrounding each transition, and then consider only the in-
formative markers between the two founders identified on
each side of the breakpoint. Generally, there is a clear transi-
tion where every marker distal to a boundary marker is con-
sistent with one founder and every marker proximal to a sec-
ond boundary marker is consistent with the other founder.
For most recombinations, we were able to find two consecu-
tive informative SNPs that were obviously on different sides
of the recombination breakpoint. The actual breakpoint is
most likely to have occurred between these two SNPs. We
then tracked the distance between each of these informative
SNPs and the HMM solution at each recombination for each
of our three samples. Figure 4 depicts a histogram of these
distances for each recombination.
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Figure 3: Sequence similarity maps for three
founder-pairs and histogram of spacing between in-
formative SNPs for all founder-pairs. The red,
green, and blue subplots illustrate the percentage
of 1000 base pair bins within a 100 kilobase window
for which there is at least 1 informative SNP dis-
tinguishing the founder pair. Because CC founders
fall into two categories, classical lab strains and wild-
derived lab strains, we have three possible categories
of founder-pair combinations. WW, shown in blue,
occurs when both founders are wild-derived. These
founder-pairs typically have low sequence similarity
and many informative variants as seen by the rela-
tive density of the blue plot. LW, shown in green,
occurs when one founder is wild-derived and the
other is a classical lab strain. These founder-pairs
also typically have many informative SNPs, but less
than WW pairs. LL, shown in red, is an example
where both founders are classical lab strains. These
combinations typically have significantly more se-
quence similarity. As shown in the red plot there
are many 1000 bp bins with no informative SNPs.
Regions shown in white on these three sequence sim-
ilarity maps indicate areas of the genome that will
be difficult to detect recombinations between these
founder-pairs. The stacked histogram plot shows the
distance between all informative SNPs genome wide.
It is divided into the 3 founder-pair categories to
illustrate the larger distances between informative
SNPS in red founder-pairs, as compared to the dis-
tances between informative SNPs for the blue and
green founder-pairs.

Figure 4: Histogram of distance between HMM so-
lution and refined recombination breakpoint. The
HMM solution can at best determine a recombina-
tion breakpoint to the resolution of a bin, which in
this case is 1Kb. In a post process, we further re-
fine these breakpoints by searching for informative
SNPs within the region of the transitions and de-
termining between which two consecutive SNPs the
breakpoint actually occurs. We calculate the dis-
tance between each of these SNPs and the HMM
solution and plot a histogram of the frequency at
which each distance occurs. The high peak at 1Kb
and the large number of distances < 1Kb indicate
that the HMM solution is typically within the range
of the informative SNPS.

Next we analyzed the mapping accuracy of the HMM so-
lution relative to the refined informative-marker solution.
For the three samples given, the HMM transition occurred
at a median distance of 527 base pairs from the midpoint of
the surrounding informative markers, with the first quartile
falling 284 base pairs from the median, and the third quar-
tile falling 899 base pairs from the median. A summary his-
togram of the distance of our HMM solution from the refined
solution is shown in Figure 4. This histogram shows that
the majority of our breakpoints were actually in the bin that
the HMM transitioned, but there were some instances where
there were no informative SNPs and the breakpoint estima-
tion could not be narrowed down to within 2Mb of the HMM
solution. In 61.8% of the recombinations, the HMM solution
fell between the informative SNPs, while 18.6% transitioned
before the informative SNP pair and 19.5% transitioned af-
ter. Transitions that occured before the informative SNP
pair tended to occur within a median distance of 546 base
pairs, while transitions that occurred after, were a median
distance of 233 base pairs.

We estimated the precision of the recombination-breakpoint
localization using the gap spacing between the two infor-
mative markers of the refined solution. Over the 220 de-
tected recombinations, we were able to localize each to a
median region of 1,022 bases with the first quartile falling
within 749 bases of the median, and the third quartile falling
within 26,412bp of the median. The closest that a recombi-
nation breakpoint was determined was 5bp between strains
NZO/H1LtJ and PWK/PhJ on Chromosome 1 around 29Mb
in sample OR867m532. The poorest precision that we could
assign an observed breakpoint was to 1,623,010 bases be-
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Figure 5: Depiction of all informative SNPs be-
tween A/J and NOD/ShiLtJ on Chromosome 13
from 101.5Mb to 104.0Mb. Informative SNPs are
shown in cyan and arrows are used to depict the be-
ginning and end of the ambiguous region between
these two strains, since there are no informative
markers between 101.9Mb and 103.5Mb.

Figure 6: Histogram of distance between infor-
mative SNPS in the refined breakpoint solution.
Starting from each HMM transition, we found the
two consecutive SNPs informative for the different
founders on each side of the breakpoint as deter-
mined by maximum likelihood founder-pair. The
separation between these informative SNPs were
used to compute the histogram shown. We consider
the true recombination breakpoint to have occurred
somewhere between these two SNPs. This indicates
that the precision of recombination breakpoint map-
ping varies from a few bases to over a megabase in
dense read coverage.

Number of Intervals Concordance with HTS
Sample HTSMUGAMegaMUGAMUGA MegaMUGA

OR867m532 117 108 118 95.56 98.09
OR1237m224 116 102 116 95.97 98.37
OR3067m352 112 102 113 96.76 98.95

Table 1: Comparison of HTS to Genotype Solutions,
showing both the number of intervals found using
each algorithm as well as the concordance between
the HTS solution and the genotyping solutions. The
concordance is measured such that at every base
pair in the genome, we find the total number of base
pairs where the genotyping solution is the same as
the HTS solution divided by the total number of
base pairs genome wide.

tween A/J and NOD/ShiLtJ on Chromosome 13 between
101.9Mb and 103.5Mb. This poor mapping is consistent
with the sequence similarity map for A/J and NOD/ShiLtJ
[21], as is shown in Figure 5, where all informative SNPs be-
tween A/J and NOD/ShiLtJ are shown in cyan and arrows
depict the start and end of this ambiguous region. A sum-
mary histogram of distance between recombination break-
point informative SNPs is shown in Figure 6.

Throughout the rest of our analysis we use the full-coverage
HTS solution with refined breakpoints as the standard with
which to evaluate alternative genotyping approaches and
lower-coverage solutions.

4.2.2 Comparison to Genotype Solutions
Next we compared the recombination breakpoints deter-

mined from the whole-genome sequence data to the break-
points estimated from the 7K MUGA and 77K MegaMUGA
genotyping platforms. Given the relatively low sampling
density of microarray based genotyping when compared to
whole-genome sequencing, it is possible that some small ge-
nomic intervals (regions between two recombination break-
points attributable to a single founder) can be missed en-
tirely. The size of the minimum detectable genomic inter-
vals was a design consideration for both MUGA and Mega-
MUGA. MUGA was designed to detect haploid founder in-
tervals larger than 1Mb on average, whereas MegaMUGA
was designed to detect both homozygous haploid or het-
erozygous diploid intervals larger than 160Kb on average.
For our three samples, OR867m532, OR1237m224, and OR3067m352,
MegaMUGA missed 1, 2, and 0 small genomic regions re-
spectively. On OR867m532, MegaMUGA missed a 106K
heterozygous region on Chromosome 8 from 19.68Kb - 19.79Kb,
while on OR1237m224, it missed a 102Kb heterozygous re-
gion on Chromosome 8 from 19.68Kb-19.79Kb, and a 394Kb
heterozygous region on Chromosome 11 from 97.50Kb-97.89Kb.
On OR3067m352, there were no missing regions. The two
missing heterozygous regions on Chromosome 8 of OR867m532
and OR1237m224 are in the same range, and examination
of the sequence similarity maps shows that this region is
adjacent to an area of very few informative SNPs for all
founder-pairs (see Figure 3). MUGA solutions for our three
samples tended to miss 7-11 intervals ranging in size from
102Kb - 3.1Mb.

A second aspect of recombination breakpoint accuracy
is whether the two sequences on either side of the recom-
bination breakpoint are consistent with the HTS predic-
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tions. MegaMUGA chose a different founder-pair in 2-3 in-
tervals per sample and also had about 1-2 false positives
(extra recombinations) per solution. MUGA results had
only 1 false positive total among our three samples and it
occurred at the beginning of a chromosome. MUGA also
only chose a different founder-pair in two instances total
for our three samples. We attribute this to the relative
maturity of the MUGA founder assignment solutions com-
pared to MegaMUGA. MUGA has been available for almost
three years and the HMM parameters have been tuned to
match the marker performance. MegaMUGA on the other
hand has been available for less than a year and fewer sam-
ples have been run on it. Moreover there is an order-of-
magnitude more markers to characterize and tune parame-
ters for. We expect MegaMUGA’s founder assignment per-
formance to improve over time both as the number of sam-
ples run on MegaMUGA increases and as we continue to
refine the MegaMUGA founder assignment algorithm.

The final aspect of comparison is the breakpoint accu-
racy, which applies only to genomic intervals that are both
detected and whose genomic intervals have founders con-
sistent with the whole-genome sequence solution on both
sides. On average, MegaMUGA localized the recombination
breakpoint to within 161Kb-320Kb while MUGA’s break-
points were within 820Kb-870Kb. We would expect MUGA
to be able to refine breakpoints to within 1Mb of the actual
location and MegaMUGA to be within 160Kb on average.
MUGA performed slightly better than anticipated on aver-
age, while MegaMUGA is not quite as good as expected at
this point, but it is still 3 to 5 times more accurate than the
MUGA platform it replaced. A comparison of the founder
solutions for each of our three CC samples is shown in Fig-
ure 7 and Table 1. In Table 1, the concordance between the
HTS solution and the genotype solution is measured such
that for every base pair in the genome, we find the total
number of base pairs where the genotyping solution is the
same as the HTS solution divided by the total number of
base pairs genome wide. Where one solution is found to be
inbred and the other is heterozygous but includes the in-
bred solution, we consider this to be half right, and count it
accordingly.

4.3 Read Coverage Analysis
We sampled the HTS reads at various coverage levels (16x,

4x, 1x, 0.5x, and 0.25x) to ascertain the level of accuracy of
our haplotype reconstructions and the recombination break-
points at each level. Since reads were chosen randomly, we
repeated each coverage level 10 times. We compared each of
the 10 solutions to our full coverage solution to determine
the number of times recombinations were found, missed or
when new recombinations not in the full coverage solution
were created (false positives). For all true recombinations,
we calculated the average distance from the recombination
breakpoints of our low coverage solutions to the full coverage
solution, and also noted the maximum distance between the
full coverage recombination location and the low coverage
solutions. A synopsis of these comparisons can be seen in
Table 2. For comparison, similar statistics for the genotyp-
ing solutions are also shown in Table 2. In addition, Figure
8 shows the 3 full-coverage solutions compared to one of
their 4x and 0.25x coverage solutions. At 4x coverage, most
solutions were very similar to the 30x baseline and were be-
tween 99.8% and 99.9% concordant with the full coverage

Figure 7: Comparison of HTS full coverage solu-
tions with MUGA and MegaMUGA solutions. We
show here the founder mosaic solutions for each of
our three CC samples. The HTS solution is shown
first, followed by the MUGA solutions and then
MegaMUGA solution for each sample. There are
a number of small differences between the MUGA
and MegaMUGA solutions and the HTS solution.
An example of one is that both MegaMUGA and
MUGA mislabeled the pink founder (129S1/SvImJ)
as yellow (A/J) on chromosome 11 of OR3067m352.
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Sample Avg. # RecombsAvg # FPAvg. # Missing RecombsAvg. Distance to HTSMax. Distance to HTS
OR867m532 95 - - - -
16.0x 93 0 2 14471.51 824000
4.0x 93 0.2 2.2 19088.47 824000
1.0x 92.6 1.8 4.2 34485.99 869000
0.5x 79.6 9.6 25 46993.45 855000
0.25x 66 18 47 66466.53 998000
MUGA 86 1 8 820717.70 3832590

MegaMUGA 93 1 1 161699.68 1748837
OR1237m224 95 - - - -

16.0x 92.4 0.4 3 7623.21 558000
4.0x 92.6 0.8 3.2 14482.41 558000
1.0x 91.3 3.1 6.8 35263.74 815000
0.5x 78.5 12.1 28.6 49397.94 982000
0.25x 77.3 10.3 28 51197.37 993000
MUGA 81 0 11 827496.10 3204258

MegaMUGA 114 2 2 252832.99 2263917
OR3067m352 90 - - - -

16.0x 88 0.3 2.3 152.93 19000
4.0x 88.2 0.8 2.6 2765.18 753000
1.0x 87.6 4.1 6.5 26921.33 919000
0.5x 77.4 8.5 21.1 45009.11 933000
0.25x 76.6 9.9 23.3 48702.63 990000
MUGA 81 0 7 870420.44 3575568

MegaMUGA 92 1 0x 320968.16 3562834

Table 2: Statistics for various coverage levels of sequencing and genotyping data for our three CC samples.

solution. At 0.25x coverage though, the solutions varied
more dramatically depending on whether or not the ran-
domly selected reads fell over enough informative SNPs for
a founder pair in a particular region. These solutions ranged
from 49.1% to 99.4% concordant with the full coverage solu-
tion. In Figure 8 we have shown a 99.1% concordant 0.25x
solution for sample OR867m532, a 95.6% concordant 0.25x
solution for sample OR1237m224, and a 76.8% concordant
0.25x solution for OR3067m352. Note that the majority
of the disconcordant solutions include a heterozygous state
rather than the expected homozygous state chosen by the
full coverage HMM. Calls of heterozygous states with only
a single observation tend to be 50% correct, in that they
always have one founder that matches the correct homozy-
gous state solution. This issue could be addressed in low
coverage cases by considering the degree of inbreeding when
establishing the emission probabilities. We have shown that
it is possible to accurately reconstruct founder mosaics us-
ing HTS data at relatively low coverage levels. In order to
maintain the ability to distinguish between homozygous and
heterozygous founder-pair states, we found that 1x coverage
was sufficient. Below this level of coverage, our results were
highly variable depending if we had reads at the informative
SNPs within our recombination breakpoint areas. Solutions
at 16x were very consistent, with the majority of the solu-
tions choosing the exact same bins at which to transition for
87.2% of found recombinations. As we lowered our coverage
level, the 10 solutions at each coverage level became more
inconsistent, as shown in Figure 9, although they still main-
tained relatively concordant solutions with the full coverage
HTS solution. As shown in Table 2, less recombinations are
found and of the recombinations found, the distance from
the HTS solution grows. The largest difference in coverage

levels comes between 1x and 0.5x, where we start to lose in-
formative SNPs since only about half of the SNPs will have
reads, and the bin size is also doubled in order to maintain
a similar level of evidence.

5. DISCUSSION
By developing a method for computing founder mosaics

from HTS data, we enable users of the CC, DO and other
mouse populations to easily transition from genotyping ar-
rays to HTS. This means that in the near future when HTS
becomes price competitive with genotyping, our current pipelines
for marker-assisted inbreeding[17], detection of residual het-
erozygosity and other tools for the CC lines[18] will be able
to transition from using genotyping arrays to HTS. We have
shown that even at relatively low coverage levels of 1x, our
founder mosaics are just as reliable, if not more accurate
than our current genotyping platform algorithms. This is
caused by our ability to see almost all informative SNPs for
each founder-pair genome-wide, rather than a pre-selected
subset of SNPs. Designing informative genotyping arrays is
also a very tediuous process,[5] and with HTS, we can avoid
this step entirely.

The accuracy with which one can resolve recombination
breakpoints in HTS data depends on both the density of
reads and the genetic diversity of the genomes on either side
of the breakpoint. We have attempted to address both of
these factors by combining an HMM data driven model with
a refine process that is based entirely on the known genetic
differences between a given founder pair. In this setting
the HMM is responsible for finding a rough estimate of the
breakpoint location, but more importantly it is responsible
for identifying the founders on either side of the breakpoint.
We can then refine the location of the breakpoint using in-
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Figure 8: Comparison of HTS full coverage solu-
tions with 4x and 0.25x coverage solutions. At 4x
coverage, most solutions are very similar and were
between 99.8% and 99.9% concordant with the full
coverage solution. At 0.25x coverage, the solution
were more variable, depending on which reads were
selected. The 0.25x solutions shown here are 99.1%,
95.6%, and 76.8% concordant with the full coverage
OR867m532, OR1237m224, and OR3067m352 solu-
tions respectively. In the OR3067m352 0.25x solu-
tion shown, it can be seen that the majority of the
disconcordance is from a heterozygous state being
selected rather than the correct homozygous state.
In each of these cases, the 0.25x solution is 50% cor-
rect, in that the heterozygous state selected includes
the correct homozygous founder.

Figure 9: Histograms of the delta between the max-
imum position and minimum position found at each
recombination among the 10 runs at each coverage
level. Coverage levels of 16x, 4x, 1x, and 0.25x are
shown. We can see that at 16x coverage, almost
all 10 solutions were identical, while at 1x coverage,
our solutions tended to be more divergent, although
the majority still found transitions within 1-4 bins
of each other.

formative SNPs down to the limits of the sequence diversity.
It has also been suggested that HTS may enable us to

detect gene conversions that were previously undetectable.
Gene conversions appear as two nearby recombinations, as
if they were a tiny double recombination. Finding gene con-
versions is very difficult when pooling read data as they tend
to be very small (100bp-3000bp) and the rate at which they
occur is currently unknown. Using our full coverage HMM
solutions, we plan to explore each bin for evidence of infor-
mative SNPs for some founder pair similar to how we refine
recombination breakpoints. The primary difference being
that when refining breakpoints the founder pair is given by
the HMM solution. In the case of gene conversion all com-
binations would have to be explored while controlling for
noise. We plan to take advantage of the observation that
gene conversions tend to fall near recombinations, and in
particular are found primarily in recombination hotspots.
By looking at both the recombination regions in our HTS
solutions as well as those regions of the genome known to
be hotspots in mouse[11, 12, 3], we can test at what cover-
age level HTS allows for the discovery of gene conversions
among multi-parental crosses.
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