Naive Bayes Classifiers



Review

et event D = data we have observed.

et events H,, ..., H, be events representing
nypotheses we want to choose between.

Jse D to pick the "best" H.

There are two "standard" ways to do this,
depending on what information we have
available.



Maximum likelihood hypothesis

* The maximum likelihood hypothesis (HM!) is
the hypothesis that maximizes the probability
of the data given that hypothesis.

HY" = argmax P(D | H;)

* How to use it: compute P(D | H.) for each

hypothesis and select the one with the
greatest value.



Maximum a posteriori (MAP)
hypothesis

* The MAP hypothesis is the hypothesis that
maximizes the posterior probability:
HMAY — argmax P(H; | D)
" P(D| H;)P(H;)
= arggnax P(D)
x argmax P(D | H;)P(H;)

* The P(D | H) terms are now weighted by the
hypothesis prior probabilities.



Posterior probability

* |f you need the actual posterior probability for
some hypothesis H:

P(D | Hy)P(Hp)
P(D)

_ P(D | Ho)P(Hyp)

B Zz P(D,H,,;)

_ P(D | Ho)P(Hy)
- >, P(D| H;)P(H;)

P(Hp | D) =




Combining evidence

* If we have multiple pieces of data/evidence
(say 2), then we need to compute or estimate

P(Dy, D5 | Hy)
which is often hard.

* |nstead, we assume all pieces of evidence are
conditionally independent given a hypothesis:

P(Dy,Ds | Hy) = P(Dy | Hy)P(D> | Hp)



Combining evidence




Classification

* Classification is the problem of identifying which of
a set categories (called classes) a particular item
pbelongs in.

* Lots of real-world problems are classification

oroblems:

— spam filtering (classes: spam/not-spam)

— handwriting recognition & OCR (classes: one for each
letter, number, or symbol)

— text classification, image classification, music
classification, etc.

* Almost any problem where you are assighing a
label to items can be set up as a classification task.




Classification

* An algorithm that does classification is called a
classifier. Classifiers take an item as input and output
the class it thinks that item belongs to. That is, the
classifier predicts a class for each item.

* Lots of classifiers are based on probabilities and
statistical inference:

— The classes become the hypotheses being tested.

— The item being classified is turned into a collection of data
called features. Useful features are attributes of the item
that are strongly correlated with certain classes.

— The classification algorithm is usually ML or MAP,
depending on what data we have available.



Example: Spam classification

New email arrives: is it spam or not spam?

A useful set of features might be the presence or
absence of various words in the email:

— F1, ~F1: "Kirlin" appears/does not appear

— F2, ~F2: "viagra" appears/does not appear

— F3, ~F3: "cash" appears/does not appear

Let's say our new email contains "Kirlin" and
"cash," but not "viagra."

The features for this email are F1, ~F2, and F3.
Let's use MAP for classification.



Example: Spam classification

* Features: F1, ~F2, F3.

HMAY = argmax P(D | H;)P(H;)

HgMAP _ argmax P(Fy,—F5, F3 | H;)P(H;)

t1€{spam,not-spam }

 But where do these probabilities come from?



Learning probabilities from data

e To use MAP, we need to calculate or estimate
P(Hi) and P(F1, ~F2, F3 | Hi) for eachi.
* |n other words, we need to know:
— P(spam)
— P(not-spam)
— P(F1, ~F2, F3 | spam)
— P(F1, ~F2, F3 | not-spam)



Learning probabilities from data

e Let's assume we have access to a large
number of old emails that are correctly
labeled as spam/not-spam.

* How can we estimate P(spam)?

# of emails labeled as spam

P —
(spam) total # of emails



Learning probabilities from data

e Let's assume we have access to a large
number of old emails that are correctly
labeled as spam/not-spam.

* How can we estimate P(F1, ~“F2, F3 | spam)?

P(Fy,~Fy, F3 | spam) = # of spam emails with those exact features

total # of spam emails

 Why is this probably going to be a very rough
estimate?



Conditional independence to the rescue!

* |tis unlikely that our set of old emails contains
many messages with that exact set of features.

* Let's make an assumption that all of our features
are conditionally independent of each other,
given the hypothesis (spam/not-spam).

P(Fy,—F5, F3 | spam) =
P(Fy | spam) - P(—F5 | spam) - P(F5 | spam)

* These probabilities are easier to get good
estimates for!

* A classifier that makes this assumption is called a
Naive Bayes classifier.



Learning probabilities from data

* So now we need to estimate P(F1 | spam)
instead of P(F1, ~“F2, F3 | spam).

* Equivalently, how can we estimate the
probability of seeing "Kirlin" in an email given
that the email is spam?

P(F} | spam) = # of spam emails with the word Kirlin

total # of spam emails



Another problem to handle...

 What if we see a word we've never encountered
before? What happens to its probability estimate?
(and why is this bad?)

P(F j | spam) = # of spam emails with word F;

total # of spam emails

[H;n:l P(F}; | spam)|P(spam)

P(spam | F1,...,F) = P, F)

* Probability of zero destroys the entire calculation!



Another problem to handle...

 Fix the estimates:

# of spam emails with word F; + 1
P(F; | spam) = .
total # of spam emails + 2

* This is called smoothing. Removes the possibility

of a zero probability wiping out the entire
calculation.

* "Simulates" two additional spam emails, one with
every word, and one with no words.



Summary of Naive Bayes

* Naive Bayes classifies using MAP:
HMAY = argmax P(D | H;)P(H;)

— argmax P(Fl, S ‘ Hz)P(Hz)

i€{spam,not-spam}

= argmax [P(Fl | H;) -+ P(Fy, | Hz)}P(HZ)

i€ {spam,not-spam}
— argmax [H P(F} | Hz)}P(Hz)
i€{spam,not-spam} j=1

 Compute this for spam and for not-spam; see
which is bigger.



Summary of Naive Bayes

e Estimating the prior for each hypothesis:

~ # of emails labeled as H;
B total # of emails

P(H;)

e Estimating the probability of a feature given a
class (aka likelihood):

# of H,; emails with word F; + 1
P(F; | H;) =
(Fy | Hi) total # of H; emails + 2




