State Space Search

Overview

- Problem-solving as search
- How to formulate an AI problem as search.
- Uninformed search methods

What is search?

Environmental factors needed

- Static The world does not change on its own, and our actions don't change it.
- Discrete A finite number of individual states exist rather than a continuous space of options.
- Observable States can be determined by observations.
- Deterministic Action have certain outcomes.

Terminology

- A state is a set of properties that define the current conditions of the world our agent is in.
 - The entire set of possible states is called the state space.
- The initial state is the state the agent begins in.
- A goal state is a state where the agent may end the search.
- An agent may take different actions that will lead the agent to new states.

Formulating problems as search

- Canonical problem: route-finding
- Sliding block puzzle
- 8 queens puzzle
- Roomba cleaning
- Automatic CS 172 proof completion
- Solitaire
- What else?

Formulating problems as search

• Define:

- What do my states look like?
- What is my initial state?
- What are my goal state(s)?
- What is my cost function?
 - How do I know how "good" a state or action is?

Formulating problems as search

• Solution:

- A path between the initial state and a goal state.
- Quality is measured by path cost.
- Optimal solutions have the lowest cost of any possible path.

- State space search gives us graph searching algorithms.
- Are we searching a tree or a (true) graph?

Often-confusing point

- There are two simultaneous graph-ish structures used in search:
 - (1) Tree or graph of underlying state space.
 - (2) Tree maintaining the record of the current search in progress (the *search tree*).

Infrastructure needed

- A node n of the search tree stores:
 - a state (of the state space)
 - a parent pointer to a node (usually)
 - the action that got you from the parent to this node (sometimes)
 - the path cost g(n): cost of the path so far from the initial state to n.
- Frontier is often stored as a stack, queue, or priority queue.
- Explored set is often stored using a data structure that enables quick look-up for membership tests.

Uninformed search methods

- These methods have no information about which nodes are on promising paths to a solution.
- Also called: blind search
- Question What would have to be true for our agent to need uninformed search?
 - No knowledge of goal location; or
 - No knowledge of current location or direction (e.g., no GPS, inertial navigation, or compass)

How do you evaluate a search strategy?

- Completeness Does it always find a solution if one exists?
- Optimality Does it find the best solution?
- Time complexity
- Space complexity

Search strategies

- Breadth-first search
 - Variant Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening depth-first search
 - Variant iterative lengthening search

Breadth-first search

- Choose shallowest node for expansion.
- Data structure for frontier?
 - Queue (regular)
- Suppose we come upon the same state twice.
 Do we re-add to the frontier?
 - No.
- Complete? Optimal? Time? Space?