Infrastructure needed

A node n of the search tree stores:
— a state (of the state space)
— a parent pointer to a node (usually)

— the action that got you from the parent to this node
(sometimes)

— the path cost g(n): cost of the path so far from the
initial state to n.

* Frontier is often stored as a stack, queue, or
priority queue.

* Explored set is often stored using a data structure
that enables quick look-up for membership tests.

Uninformed search methods

e These methods have no information about
which nodes are on promising paths to a
solution.

 Also called: blind search

 Question — What would have to be true for
our agent to need uninformed search?

— No knowledge of goal location; or

— No knowledge of current location or direction
(e.g., no GPS, inertial navigation, or compass)

How do you evaluate a search

strategy?
Completeness — Does it always find a
solution if one exists?
Optimality — Does it find the best solution?
Time complexity
Space complexity

function TREE-SEARCH(problemn) returns a solution, or failure
initialize the|frontier using the initial state of problem

Frontier = stack,

Ioop do gueue, or priority
if the frontier is empty then return failure queue.

choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

function GRAPH-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem

initialize the explored set to be empty Explored set = hash
loop do table.

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the/frontier

only if not in the frontier or explored set

Search strategies

Breadth-first search
— Variant — Uniform-cost search

Depth-first search
Depth-limited search

terative deepening depth-first search
— Variant — iterative lengthening search

Breadth-first search

Choose shallowest node for expansion.
Data structure for frontier?
— Queue (regular)

Suppose we come upon the same state twice.
Do we re-add to the frontier?

— No.
Complete? Optimal? Time? Space?

Uniform-cost search

Choose node with lowest path cost g(n) for
expansion.

Data structure for frontier?

— Priority queue

Suppose we come upon the same state twice.
Do we re-add to the frontier?

—Yes. (And remove old node from frontier.)

Complete? Optimal? Time? Space?

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem. INITTIAL-STATE, PATH-COST =0
frontier < a priority queue ordered by PATH-COST, with node as the only element
explored « an empty set
loop do
if EMPTY ?(frontier) then return failure
node « POP(frontier) /* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child «+— CHILD-NODE(problem, node, action)
if child.STATE is not in ezplored or frontier then
frontier « INSERT(child, frontier)
else if child . STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Best-first search
(class of algorithms)

e Same algorithm as uniform-cost search.

e Uses a different evaluation function to sort
the priority queue.

* Need a heuristic function, h(n).

— h(n) = Estimate of lowest-cost path from node n
to a goal state.

A* Algorithm

e Sort priority queue by a function f(n), which
should be the estimated lowest-cost path
through node n.

e Whatis f?
— f(n) = g(n) + h(n)

Heuristics

* A heuristic function h(n) is admissible if it
never over-estimates the true lowest cost to a
goal state from node n.

e Equivalent: h(n) must always be less than or
equal to the true cost from node n to a goal.

 What happens if we just set h(n) =0 for all n?

Heuristics

A heuristic function h(n) is consistent if values of

h(n) along any path in the search tree are non-
decreasing.

Equivalent: given a node n, and an action which
takes you from n to node n":

— h(n) <= cost(n, a, n') + h(n')

— h(n) — h(n') <= cost(n, a, n')

Consistency implies admissibility (but not the
other way around).

Difficult to invent heuristics that are admissible
but not consistent.

