Mathematics of rewards
Assume our rewards are ry, ry, 1, ...

What expression represents our total
rewards?

How do we maximize this? Is this a good idea?

Use discounting: at each time step, the reward

is discounted by a factor of y (called the
discount rate).

Future rewards from time t =

Tt + YT¢41 +727“t+2-|-'“ — Z’YthJrk
k=0

Markov Decision Processes

An MDP has a set of states, S, and a set of
actions, A(s), for every state s in S.

An MDP encodes the probability of
transitioning from state s to state s' on action
a: P(s'| s, a)

RL also requires a reward function, usually
denoted by R(s, a, s') = reward for being in
state s, taking action a, and arriving in state s'.

An MDP is a Markov chain that allows for
outside actions to influence the transitions.

Grass gives a reward of 0.
Monster gives a reward of -5.
Pot of gold gives a reward of +10 (and ends game).

Two actions are always available:

— Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

— Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

— Any movement that would take you off the board moves you as
far in that direction as possible or keeps you where you are.

Value functions

* Almost all RL algorithms are based around
learning value functions.

e A value function estimates the expected
future reward from either a state, or a state-
action pair.

— V(s): If we are in state s, and follow policy m, what
is the total future reward we will see, on average?

— Q™(s, a): If we are in state s, and take action a,
then follow policy i, what is the total future
reward we will see, on average?

Optimal policies

* There is always a "best" policy, called t*.

* The point of RL is to discover this policy by
employing various algorithms.

 We denote the value functions corresponding
to the optimal policy by V*(s) and Q*(s, a).

Bellman equations

 The V(s) and Q(s, a)
functions, always satisfy
certain recursive

relationships for any MDP.

* These relationships, in the
form of equations, are
called Bellman equations.

Recursive relationship of V and Q:
V*(s) = max Q™ (s, a)

The average future rewards from a state s is equal
to the average future rewards of whatever the
best action is from that state.

Q" (s,a) = Z P(s"| s,a)|R(s,a,s") +~yV*(s")]

The average future rewards obtained by taking an
action from a state is the weighted average of the
average future rewards from the new state.

Bellman equations

V*(_maXZP s'| s,a)|R(s,a,s") +~yV*(s")]

ZPS | s,a)|R(s,a,s) ’ynza;x@*(sl,a’)}

* Most RL algorithms use these equations in
various ways to estimate V* or Q*. An optimal
policy can be derived from either V* or Q*.

RL algorithms

A main categorization of RL algorithms is

whether or not they require a full model of
the environment.

* |n other words, do we know P(s' | s, a) and
R(s, a, s') for all combinations of s, a, s'?
— If we have this information (uncommon in the real
world), we can compute V* or Q* directly.

— If we don't have this information, we can estimate
V* or Q* from experience or simulations.

Value iteration

* Value iteration is an algorithm that computes
an optimal policy, given a full model of the
environment.

e Algorithm is derived directly from the Bellman
equation (usually for V*, but can use Q* as
well).

e Value iteration maintains a table of V values,
one for each state. Each value V[s] eventually
converges to the true value V*(s).

Value iteration

Initialize V arbitrarily, e.g., V[s] = 0 for all states s.
Repeat
for each state s:
Vaew[s] < max, Y., P(s' | s,a) [R(s,a,s") +yV[s]]
V < View (copy new table over old)
until the maximum difference in new and old values is smaller than some threshold
Output a policy m where 7(s) = argmax, Y., P(s' | s,a) [R(s,a,s") +yV*(5)]

Grass gives a reward of 0.
Monster gives a reward of -5.
Pot of gold gives a reward of +10 (and ends game).

Two actions are always available:

— Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

— Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

— Any movement that would take you off the board moves you as
far in that direction as possible or keeps you where you are.

