Mathematics of rewards

- Assume our rewards are r₀, r₁, r₂, ...
- What expression represents our total rewards?
- How do we maximize this? Is this a good idea?
- Use discounting: at each time step, the reward is discounted by a factor of γ (called the discount rate).
- Future rewards from time t = $\sum_{k=0}^{\infty} \gamma^k r_{t+k}$

Markov Decision Processes

- An MDP has a set of states, S, and a set of actions, A(s), for every state s in S.
- An MDP encodes the probability of transitioning from state s to state s' on action a: P(s' | s, a)
- RL also requires a reward function, usually denoted by R(s, a, s') = reward for being in state s, taking action a, and arriving in state s'.
- An MDP is a Markov chain that allows for outside actions to influence the transitions.

- Grass gives a reward of 0.
- Monster gives a reward of -5.
- Pot of gold gives a reward of +10 (and ends game).
- Two actions are always available:
 - Action A: 50% chance of moving right 1 square,
 50% chance of staying where you are.
 - Action B: 50% chance of moving right 2 squares,
 50% chance of moving left 1 square.
 - Any movement that would take you off the board moves you as far in that direction as possible or keeps you where you are.

Value functions

- Almost all RL algorithms are based around learning value functions.
- A value function estimates the expected future reward from either a state, or a stateaction pair.
 - $V^{\pi}(s)$: If we are in state s, and follow policy π, what is the total future reward we will see, on average?
 - Q^π(s, a): If we are in state s, and take action a, then follow policy π , what is the total future reward we will see, on average?

Optimal policies

- There is always a "best" policy, called π^* .
- The point of RL is to discover this policy by employing various algorithms.
- We denote the value functions corresponding to the optimal policy by V*(s) and Q*(s, a).

Bellman equations

- The V(s) and Q(s, a)
 functions, always satisfy
 certain recursive
 relationships for any MDP.
- These relationships, in the form of equations, are called Bellman equations.

Recursive relationship of V and Q:

$$V^*(s) = \max_{a} Q^*(s, a)$$

The average future rewards from a state s is equal to the average future rewards of whatever the best action is from that state.

$$Q^*(s, a) = \sum_{s'} P(s' \mid s, a) [R(s, a, s') + \gamma V^*(s')]$$

The average future rewards obtained by taking an action from a state is the weighted average of the average future rewards from the new state.

Bellman equations

$$V^*(s) = \max_{a} \sum_{s'} P(s' \mid s, a) [R(s, a, s') + \gamma V^*(s')]$$

$$Q^*(s, a) = \sum_{s'} P(s' \mid s, a) \left[R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right]$$

 Most RL algorithms use these equations in various ways to estimate V* or Q*. An optimal policy can be derived from either V* or Q*.

RL algorithms

- A main categorization of RL algorithms is whether or not they require a full model of the environment.
- In other words, do we know P(s' | s, a) and R(s, a, s') for all combinations of s, a, s'?
 - If we have this information (uncommon in the real world), we can compute V* or Q* directly.
 - If we don't have this information, we can estimate
 V* or Q* from experience or simulations.

Value iteration

- Value iteration is an algorithm that computes an optimal policy, given a full model of the environment.
- Algorithm is derived directly from the Bellman equation (usually for V*, but can use Q* as well).
- Value iteration maintains a table of V values, one for each state. Each value V[s] eventually converges to the true value V*(s).

Value iteration

```
Initialize V arbitrarily, e.g., V[s] = 0 for all states s.

Repeat
for each state s:
V_{\text{new}}[s] \leftarrow \max_a \sum_{s'} P(s' \mid s, a) \left[ R(s, a, s') + \gamma V[s'] \right]
V \leftarrow V_{\text{new}} \text{ (copy new table over old)}
until the maximum difference in new and old values is smaller than some threshold
Output a policy \pi where \pi(s) = \operatorname{argmax}_a \sum_{s'} P(s' \mid s, a) \left[ R(s, a, s') + \gamma V^*(s') \right]
```


- Grass gives a reward of 0.
- Monster gives a reward of -5.
- Pot of gold gives a reward of +10 (and ends game).
- Two actions are always available:
 - Action A: 50% chance of moving right 1 square,
 50% chance of staying where you are.
 - Action B: 50% chance of moving right 2 squares,
 50% chance of moving left 1 square.
 - Any movement that would take you off the board moves you as far in that direction as possible or keeps you where you are.