Learning from experience

e What if we don't know the exact model of the
environment, but we are allowed to sample
from it?

— That is, we are allowed to "practice"” the MDP as
much as we want.

— This echoes real-life experience.

* One way to do this is temporal difference
learning.



Temporal difference learning

 We want to compute V(s) or Q(s, a).

* TD learning uses the idea of taking lots of
samples of V or Q (from the MDP) and
averaging them to get a good estimate.

e Let's see how this works for estimating the
probability of a coin flip being heads.



Q-learning

* Q-learning is a temporal difference learning
algorithm that learns optimal values for Q
(instead of V, as value iteration did).

* The algorithm works in episodes, where the
agent "practices" (aka samples) the MDP to
learn which actions obtain the most rewards.

e Like value iteration, table of Q values
eventually converge to Q*.

(under certain conditions)



Initialize Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state
Repeat (for each step of the episode):
Choose action a from state s using policy derived from @ (see note below)
Take action a, observe reward r, new state s’
Q[s,a] + Q[s,a]l + a[r + ymaxy Q[s', a'] — Qls, al]
s« s
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

* Notice the QJs, a] update equation is very similar
to the coin probability update equation.

— (The extra y max_. Q[s', a'] piece is to handle future
rewards.)

— alpha (0 < a <=1) is called the learning rate; it controls
how fast the algorithm learns. In stochastic
environments, alpha is usually small, such as 0.1.




Initialize Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state

Repeat (for each step of the episode):
Choose action a from state s using policy derived from @ (see note below)

Take action a, observe reward r, new state s’
Q[s,a] + Q[s,a]l + a[r + ymaxy Q[s', a'] — Qls, al]
s« s
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

* Note: The "choose action" step does not mean you
choose the best action according to your table of Q

values.
* You must balance exploration and exploitation; like in

the real world, the algorithm learns best when you
"practice"” the best policy often, but sometimes explore

other actions that may be better in the long run.



Initialize Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state
Repeat (for each step of the episode):
Choose action a from state s using policy derived from @ (see note below)
Take action a, observe reward r, new state s’
Q[s,a] + Q[s,a]l + a[r + ymaxy Q[s', a'] — Qls, al]
s« s
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

e Often the "choose action" step uses policy that mostly
exploits but sometimes explores.
* One common idea: (epsilon-greedy policy)

— With probability 1 - €, pick the best action (the "a" that
maximizes QJs, a].
— With probability €, pick a random action.
* Also common to start with large € and decrease over
time while learning.




Initialize Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state
Repeat (for each step of the episode):
Choose action a from state s using policy derived from @ (see note below)
Take action a, observe reward r, new state s’
Q[s,a] + Q[s,a]l + a[r + ymaxy Q[s', a'] — Qls, al]
s« s
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

* What makes Q-learning so amazing is that the
Q-values still converge to the optimal Q*
values even though the algorithm itself is not
following the optimal policy!




Q-learning with Ebola!

* Update formula:

Qls.a] « Qls.a] + o [r +ymaxQls, '] - Qls.a

 Sample episodes (states and actions):
Sick-X =» A =» Sick-A =» A =» Healthy
Sick-X =» A =» Sick-A =» B =» Healthy
Sick-X =» A =» Sick-A =» A =>» Sick-A =» B =» Healthy




