Local Search

Toolbox so far

e Uninformed search

— BFS, DFS, Iterative deepening DFS, Uniform cost
search

e Heuristic search
— A*

Review

e Search:

— Use in environments that are static, discrete,
100% observable, deterministic.

* Things we care about:

— Completeness, optimality, time/space complexity.

2/

>
A
45
45
O
(=
op

:

1

New ldea: Local Search

* Can be used when path from start state to
goal doesn't matter (only the goal matters).

* Process is slightly different than "normal”
search:

— Nodes/states are always complete solutions to
the problem, not partial solutions.

— One current node is maintained that has the best
solution at the moment.

— Actions generate new nodes with new complete
solutions.

Local Search

* Benefits:
— Use very little memory, often constant.
— Can search very large state spaces quickly.

e Useful in optimization problem:s.

State-space landscape

State-space landscape

AR NN) A N
that shows the values of the heuristic §

g

47/ 50
! Ira -
A
ll'l

-

' \
i

e search space of possible states.

S Iy e

——r

Hill climbing algorithm

* Loop that looks at all possible neighbors of the current
state, and picks the one that increases the optimization
function the most.

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «— MAKE-NODE(problem.INITIAL-STATE)

loop do
neighbor « a highest-valued successor of current
if neighbor. VALUE < current. VALUE then return current.STATE
current « neighbor

Variants

* Stochastic hill climbing
 Random-restart hill climbing

Simulated annealing

QN

c(x)

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current «~ MAKE-NODE(problem.INITIAL-STATE)

fort=1toocdo Temperature
T « schedule(t) gets lower
if 7' = 0 then return current over time

nezxt «+ a randomly selected successor of current
AFE « next.VALUE — current.VALUE
if AE > 0 then current « next

else current « next only with probability e>%/7

Probability is lower
with smaller T,

and lower with
bigger abs(delta-E)

Beam search

e Variation of hill climbing
— Use k current states

— Generate all of their successors
— Take k best

e Variation: stochastic beam search

— Adds in probabilistic idea from simulated
annealing.

— Same as above, but take k best successors based
on probability.

Genetic algorithms

e \ariation on stochastic beam search.

e Successor states are generated using two
parent states, not one. (Crossover)

 Mutation: Randomly modifies a current state.

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new-population «+ empty set
for i = 1 to Si1ZE(population) do
T +— RANDOM-SELECTION(population, FITNESS-FN)
y +— RANDOM-SELECTION(population, FITNESS-FN)
child + REPRODUCE(z, y)
if (small random probability) then child <+ MUTATE(child)
add child to new_population
population + new-population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

