IVEGor.. AT LEAST ITS BETTER ARE THESE CMoN, GUYS, BE PANENT. IN A
CHEERIOS THAN THE QUAILEGGS SXITNES FEW HUNDRED MORE MERLS, THE
GENENC ALGORIMHM SHOVLLD CATOA

WITH A SHOT IN WHIPPED CREAMAND XZP-fR/IED?
UP TOEXISTING RECIPES AND STRRT

OF VERMOUTH. MSG FROM LAST TIME.,

‘lo' \
; !; "‘

\ [\ / | / I
WEVE DECIDED TO DROP THE (S DEFARTMENT FROM OUR WEEKLY DINNER PARTY HOSTING ROTATION.

b

Constraint Satisfaction Problems

Toolbox so far

e Uninformed search

— BFS, DFS, Iterative deepening DFS, Uniform cost
search

* Heuristic search
— A*
 Local search

— Hill climbing, simulated annealing, genetic
algorithms

Constraint Satisfaction Problems

e Another variation on search.

e Requires a specific kind of problem (less
general than heuristic or local search).

e Algorithms for solving CSPs can be very fast
because they eliminate large areas of the
search space at once.

CSP Needs:

A set of variables

* Each variable has a domain (finite and discrete)
— Some CSPs use infinite domains.

* Set of constraints that specify what combinations
of variables are legal.

— Each constraint is a mathematical relation that must
be satisfied.

— OK, you don't like relations...think of constraints as
boolean functions on the variables.

Constraints

Unary

Binary

Larger (or global)

Preference constraints (not discussed)

A O N
W O N

= N w R (&) D -~ 0

Solving a CSP is still search!

e Each state is a (possibly partial) set of variable
assignments.

* Goal state is any complete set of variable
assignments that satisfies all the constraints.

Northern
Territory

Queensland

South
Australia

New South Wales

Tas

Search example

o

— |

 Sol SSR S

Search example

G

—]

SVl SSR ST

A

OIS

Search example

2,

—]

Sl SYR ST

A/\

e~

...but a different kind of search

* Doesn't use a "global"” heuristic function.

e Algorithms are often fast because once a
constraint is violated, any further search from

that state is pointless.

* When a constraint is violated, we know
exactly which variables have bad values and
should be changed.

CSP search

What is the start state?

What is the goal?

What are the actions? (i.e., how do we
generate successor states?)

What kind of search algorithm can we use?

Reducing the search space size

* Constraint propagation: Reducing the number
of possible values for a variable.

— Can happen before or during search.

* First we need a constraint graph.

— Binary constraints only!

* Arc consistency

— A variable Xi is arc consistent wrt Xj if for every value
in Di there is some value in Dj that satisfies the
constraint on arc (Xi, Xj).

* AC-3 Algorithm:
— Add all arcs in graph to queue.

— For arc (Xi, Xj), remove any impossible values in Di.
— If Di changed, add all arcs (Xk, Xi) to queue. (k#j)

function AC-3(csp) returns false if an inconsistency is found and true otherwise
inputs: csp, a binary CSP with components (X, D, C)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REVISE(csp, X, X;) then
if size of D; = 0 then return false
for each X, in X;.NEIGHBORS - { X } do
add (X%, X;) to queue
return true

function REVISE(csp, X;, X;) returns true iff we revise the domain of X

revised < false
for each z in D; do
if no value y in D; allows (z,y) to satisfy the constraint between X; and X; then
delete z from D;
revised «— true
return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is arc-
consistent, or some variable has an empty domain, indicating that the CSP cannot be solved. The
name “AC-3” was used by the algorithm’s inventor (?) because it’s the third version developed in the

paper.

Using AC-3

e Sometimes AC-3 solves a CSP all on its own,
without any search at all.

* |f it doesn't, we can use backtracking search to
find a solution.

— Variation on DFS that backtracks whenever a
variable has no legal values left to assign.

Backtracking search

* How do we pick a variable to assign to?
— Minimum remaining values heuristic
— Degree heuristic

* How do we pick a value to assign to the
variable?

— Least constraining value heuristic

