Real-world use of alpha-beta

* (Regular) minimax is normally run as a
preprocessing step to find the optimal move
from every possible situation.

 Minimax with alpha-beta can be run as a
preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

e Save states somewhere so if we re-encounter
them, we don't have to recalculate
everything.



Real-world use of alpha-beta

e States get repeated in the game tree because
of transpositions.

* When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).

— Called a transposition table.



Real-world use of alpha-beta

* |In the real-world, alpha-beta does not "pre-
generate" the game tree.
— The whole point of alpha-beta is to not have to
generate all the nodes.
* The DFS part of minimax/alpha-beta is what
generates the tree.



Improving on alpha-beta

* Alpha-beta still has to search down to
terminal nodes sometimes.

— (and minimax has to search to terminal nodes all
the timel)

* Improvement idea: can we get away with only
looking a few moves ahead?



Heuristic minimax algorithm

h-minimax(s, d) =
heuristic-eval(s) if cutoff(s, d)

max h-minimax(result(s, a), d+1) if player(s)=MAX

a in actions(s)
MiNg in actions(s) N-Minimax(result(s, a), d+1) if player(s)=MIN

result(s, a) means the new state generated
by taking action a in state s.

cutoff(s, d) is a boolean test that determines whether
we should stop the search and evaluate our position.



How to create a good evaluation
function?
* Trying to judge the probability of winning
from a given state.

* Typically use features: simple characteristics
of the game that correlate well with the
probability of winning.



MAX

MIN

MAX

00O
X X X X

utility=1

One last point

00O
X X X

00O
X X X
00O
X X X O X
etc...

X
OO0O (0
X X X X
OO0O (0
X X X X X

utility=1



