
Artificial	Intelligence	Homework	1	
	
If	you	have	not	already	done	so,	read	textbook	sections	3.1-3.6.	
	
1. Imagine	an	agent	is	stuck	in	a	maze	like	this	one:	

	
The	star	represents	the	agent’s	starting	location,	and	the	G	represents	the	goal	location	the	agent	is	trying	
to	reach.		Assume	the	agent	starts	in	the	maze	with	a	certain	amount	of	energy,	Estart.	
	
At	any	time	step,	there	are	two	movement	options.		You	may	choose	to	move	one	square	in	any	direction	
that	is	not	blocked	by	a	wall	(this	takes	one	unit	of	time).		This	does	not	use	up	any	of	your	energy.		You	
may	also	choose	to	“jump”	two	squares	in	any	single	direction	that	is	not	blocked	by	a	wall	(also	takes	
one	unit	of	time).		However,	when	you	choose	to	jump,	it	uses	up	one	unit	of	energy	(which	you	can	never	
get	back).		If	your	energy	ever	drops	to	zero,	you	may	not	jump	anymore.		Furthermore,	you	can	never	
jump	twice	in	a	row	(you	may	jump,	then	walk,	then	jump,	but	never	jump	then	jump).	
	
The	agent’s	goal	is	to	find	a	sequence	of	actions	that	ends	at	the	goal	location,	while	minimizing	the	total	
time	it	takes.		The	ending	amount	of	energy	is	irrelevant.	
	
Note	that	this	is	problem	formulation	is	different	from	the	regular	navigation	problem!	
	
All	of	these	questions	pertain	to	a	generic	maze	of	size	m	by	n,	not	specifically	the	maze	above,	which	is	
only	shown	to	illustrate	how	the	problem	is	set	up.	
	

(a) Formulate	what	a	state	looks	like	for	this	problem.		Define	it	using	specific	data	types.	
	

(b) If	the	grid	is	m	by	n,	what	is	the	(maximum)	size	of	the	state	space?	Justify	your	answer.	You	
should	assume	that	all	possible	states	are	reachable	from	the	start	state.	
	

(c) What	is	the	maximum	branching	factor	of	this	problem?		Briefly	justify	your	answer.	
	

(d) The	Manhattan	distance	between	two	points	is	defined	to	be	the	sum	of	the	total	vertical	and	
horizontal	differences	between	the	points.		In	other	words,	if	you	imagine	a	city	laid	out	using	a	
grid	(like	Manhattan	in	New	York	City),	the	Manhattan	distance	is	the	total	distance	you	would	
have	to	walk	to	get	from	one	intersection	to	another	(because	no	streets	run	diagonally).			
	
For	this	problem	is	the	Manhattan	distance	from	the	agent’s	location	to	the	goal	location	an	
admissible	heuristic?	Why	or	why	not?	
	

G

̤



(e) Describe	and	justify	a	non-trivial	admissible	heuristic	for	this	problem	that	is	not	the	Manhattan	
distance	to	the	goal.	
	

(f) If	we	used	an	inadmissible	heuristic	to	solve	this	problem,	could	it	change	the	completeness	of	the	
search?		Why	or	why	not?	
	

(g) If	we	used	an	inadmissible	heuristic	to	solve	this	problem,	could	it	change	the	optimality	of	the	
search?		Why	or	why	not?	
	

2. Assume	you	are	given	a	graph	like	the	one	we	used	in	class	for	A*,	with	vertices	representing	
locations	and	the	edge	weights	representing	travel	time	between	locations.		(That	graph	is	supplied	
for	you	at	the	end	of	this	homework	to	refresh	your	memory.)		The	travelling	salesperson	problem	
asks,	“What	is	the	fastest	route	that	begins	at	a	specific	starting	location,	visits	all	the	other	locations	
in	the	graph	in	any	order,	and	returns	back	to	the	starting	location?”		Suppose	we	want	to	solve	this	
problem	using	A*.	
	
(a)	Formulate	what	a	state	could	be	represented	for	this	problem.		Define	this	representation	using	
specific	data	types.			
	
(b)	What	does	the	initial	state	look	like,	and	what	does	a/the	goal	state(s)	look	like?		(If	it	helps	to	use	
specific	examples	from	the	in-class	graph,	you	may.)		Hint:	You	will	need	to	represent/store	more	
than	just	the	current	location	of	the	salesperson.			
	
(c)	Suppose	I	define	a	heuristic	for	this	problem	to	be	the	sum	of	all	the	straight-line	distances	from	
the	salesperson	to	all	the	locations	the	salesperson	hasn’t	visited	yet.		Explain	why	this	heuristic	is	not	
admissible.	
	
(d)	Define	a	non-trivial	admissible	heuristic	for	this	problem.		(Non-trivial	means	you	must	make	a	
reasonably	intelligent	heuristic;	you	can’t	just	pick	h(n)	=	0	or	something	similar.)	

	
3. In	the	3-disc	Tower	of	Hanoi	puzzle,	you	are	given	three	pegs,	labeled	A,	B,	and	C,	and	three	discs,	

labeled	D1,	D2,	and	D3.		D1	is	larger	than	D2,	and	D2	is	larger	than	D3.		The	puzzle	starts	with	all	three	
discs	on	peg	A,	with	D1	on	the	bottom,	D2	resting	on	top	of	D1,	and	D3	resting	on	top	of	D2.		The	goal	
is	to	move	all	the	discs	onto	peg	C,	with	the	caveats	being	you	can	only	ever	move	the	top	disc	on	any	
peg,	and	a	larger	disc	can	never	be	placed	on	top	of	a	smaller	disc.		In	other	words,	D3	may	rest	
directly	on	top	of	D2	or	D1,	but	D2	can	only	rest	directly	on	top	of	D1,	and	D1	can	never	rest	on	top	of	
any	other	disc.	
	
Let	our	actions	be	defined	as	follows:	MOVE(x,	y,	z)	where	x	is	the	name	of	a	disc,	y	is	the	peg	where	
disc	x	is	located	(on	top),	and	z	is	the	peg	where	disc	x	is	being	moved	to.	
	
(a)	Define	a	state	representation	using	specific	data	types.	
	
(b)	What	does	the	initial	state	look	like?		What	does	the	goal	state(s)	look	like?		
	
(c)	Draw	the	state	space	as	a	directed	graph,	showing	which	states	are	reachable	from	which	other	
states.		Only	include	states	that	are	reachable	in	at	most	three	moves	from	the	initial	state.		The	
vertices	of	the	graph	are	the	states,	and	the	edges	of	the	graph	are	the	moves.		Label	each	edge	with	
the	name	of	the	move	(as	in	MOVE(x,	y,	z)).		Because	each	move	is	reversible,	each	edge	should	have	a	
corresponding	edge	in	the	other	direction,	labeled	with	the	“opposite”	move.		Note	this	is	a	graph	of	
the	search	space,	not	a	search	tree.	



	
(d)	Invent	a	non-trivial	heuristic	for	this	problem.	
	
	

4. Consider	the	following	graph,	where	we	are	trying	to	find	the	shortest	path	from	vertex	A	to	either	F	
or	G	(both	F	and	G	are	goal	states).	

	

	
	

Here	are	four	possible	heuristic	functions	h1(n)	through	h4(n):	
	 A	 B	 C	 D	 F	 G	
h1	 0	 0	 0	 0	 0	 0	
h2	 11	 7	 7	 3	 0	 0	
h3	 13	 9	 7	 1	 0	 0	
h4	 15	 10	 11	 5	 0	 0	

	
(a) Which,	if	any,	of	the	heuristics	are	admissible?	

	
(b) Which,	if	any,	of	the	heuristics	are	consistent?	

	
(c) Run	A*	(by	hand)	using	h3,	showing	the	search	tree	generated,	and	the	frontier	and	explored	lists.		

At	the	end,	please	also	provide	a	list	showing	in	what	order	nodes	were	visited	(this	can	be	done	
by	numbering	your	frontier	nodes	as	you	pop	them	off	the	priority	queue,	or	just	make	a	separate	
list	somewhere	else	on	the	page).			
	
What	is	the	best	path	returned	by	A*?	
	

(d) Recall	that	the	term	best-first	search	refers	to	any	search	algorithm	that	uses	a	heuristic	function	
to	prioritize	the	frontier	by	which	nodes	would	be	best	to	examine	first.		A*	is	an	example	of	an	
algorithm	that	falls	into	this	category.		Consider	a	different	algorithm	that	also	falls	into	this	
category,	called	greedy	best-first	search.		This	algorithm	sorts	the	frontier	by	f(n)	=	h(n),	rather	
than	f(n)	=	g(n)	+	h(n).		Run	greedy	best	first	search	by	hand	using	h3,	following	the	same	
procedure	as	part	(c).			
	
What	is	the	best	path	returned	by	greedy	best-first	search?	



	


