
MinimaxInfo	is	a	struct	or	class	that	stores	the	minimax	value	of	a	state	and	an	action	representing	the	best	move	from	that	
state.	
	
table	is	a	hash	table	or	dictionary	that	stores	a	mapping	between	game	states	and	MinimaxInfo	objects.	
	
Terminal-Test(state)	is	a	function	that	returns	true	if	state	is	a	terminal	state	(meaning	the	game	has	been	won,	lost,	or	
drawn).	
	
Utility(state)	is	a	function	that	determines	the	numerical	worth	of	a	terminal	state.		Typically	these	values	are	positive	for	a	
MAX	win	and	negative	for	a	MIN	win,	with	0	meaning	a	draw.	
	
Cutoff-Test(state,	depth)	is	a	Boolean	function	that	returns	true	if	the	search	should	be	cut	off	at	this	state.		Usually	this	is	
based	on	the	depth	of	the	state	in	the	search	tree;	for	instance,	we	could	choose	to	cut	off	all	searches	after	looking	four	moves	
ahead.		This	function	can	be	based	on	other	factors	of	the	state,	however,	if	desired,	leading	to	some	branches	of	the	search	
tree	searching	deeper	than	other	branches.	
	
Eval(state)	is	a	function	that	uses	a	heuristic	to	determine	the	numerical	worth	of	a	non-terminal	state.		Like	the	Utility	
function,	these	values	should	be	positive	for	states	that	will	likely	lead	to	MAX	wins,	and	negative	for	states	that	will	likely	lead	
to	MIN	wins.		For	MAX,	higher	values	(closer	to	positive	infinity)	should	correlate	with	a	higher	probability	of	winning.		For	
MIN,	lower	values	(closer	to	negative	infinity)	should	correlate	with	a	higher	probability	of	winning.	
	
Actions(state)	is	a	function	that	returns	all	legal	actions	from	a	state.	
	
Result(state,	action)	is	a	function	that	takes	a	state	and	an	action	and	returns	a	new	state	(the	successor	state,	or	child	state)	
that	results	from	taking	the	action	in	the	original	state.		This	function	assumes	the	action	is	a	legal	action	from	the	state.	
	
PlayerWhoMovesNext(state)	is	a	function	that	takes	a	state	and	returns	the	player	who	moves	next	from	that	state.		(This	
might	just	be	a	variable	stored	in	the	state	object	itself.)	
	
	
	
Important	Notes:	
	

• This	version	of	minimax	with	alpha-beta	pruning	and	heuristics	is	designed	to	be	re-run	before	every	computer	move,	
starting	with	an	empty	transposition	table.			The	call	should	look	like	
	
AlphaBetaWithHeuristics(current_state,	table,	negative	infinity,	positive	infinity,	1)	
	
The	transposition	table	must	be	reset	for	each	call	because	each	search	will	re-populate	the	table	with	states	found	
deeper	and	deeper	in	the	tree;	this	will	likely	result	in	different	heuristic	values	bubbling	up	and	may	change	the	
pruning	process	of	alpha-beta.	
	
Every	call	to	this	function	should	start	from	the	current	state	(the	state	from	which	the	computer	has	to	make	a	move).		
Do	not	re-search	from	the	start	state	(the	empty	board).	
	

• States	that	are	short-circuited	are	not	stored	in	the	transposition	table.		They	correspond	to	states	that	will	never	be	
chosen	anyway,	so	there’s	no	reason	to	store	them.		The	code	below	reflects	this.		(If	you	do	store	such	states	in	the	
table,	nothing	really	changes;	it	just	uses	more	memory.)	
	

• Do	not	be	concerned	if	your	transposition	table	sizes	do	not	match	mine	for	Part	B	(they	should	match	for	Part	A).		
The	size	of	the	transposition	table	is	highly	dependent	on	which	moves	are	examined	first	by	alpha-beta	and	the	
values	returned	by	the	heuristic	function,	and	these	two	things	may	not	match	up	exactly	with	my	code	(which	is	fine).	 	



function	AlphaBetaWithHeuristics(state,	table,	alpha,	beta,	depth):	
	 //	if	we’ve	already	computed	the	minimax	value	for	this	state,	don’t	do	it	again!	
	 if	table	contains	state:	

return	table[state].minimaxValue		
	

	 else	if	Terminal-Test(state):	
	 	 u	=	Utility(state)	

table[state]	=	MinimaxInfo(u,	null)		 //	terminal	states	have	no	best	move	
return	u	

	
	 else	if	Cutoff-Test(state,	depth):	
	 	 e	=	Eval(state)	
	 	 table[state]	=	MinimaxInfo(e,	null)	 //	search	is	ending	early,	so	we	don’t	know	the	best	move	
	 	 return	e	
	 	
	 else	if	PlayerWhoMovesNext(state)	==	MAX:	
	 	 bestMinimaxSoFar	=	negative	infinity	
	 	 bestMoveForState	=	null	
	 	 for	each	action	a	in	Actions(state):	
	 	 	 childState	=	Result(state,	a)	
	 	 	 minimaxOfChild	=	AlphaBetaWithHeuristics(childState,	table,	alpha,	beta,	depth+1)	
	 	 	 if	minimaxOfChild	>	bestMinimaxSoFar:	
	 	 	 	 bestMinimaxSoFar	=	minimaxOfChild	
	 	 	 	 bestMoveForState	=	a	
	 	 	 if	minimaxSoFar	>=	beta:		 	 	 	 //	short-circuit;	prune	search	
	 	 	 	 return	bestMinimaxSoFar	
	 	 	 alpha	=	max(alpha,	bestMinimaxSoFar)	
	 	 table[state]	=	MinimaxInfo(bestMinimaxSoFar,	bestMoveForState)	
	 	 return	bestMinimaxSoFar	
	
	 else	//	PlayerWhoMovesNext(state)	==	MIN:	
	 	 bestMinimaxSoFar	=	infinity	
	 	 bestMoveForState	=	null	
	 	 for	each	action	a	in	Actions(state):	
	 	 	 childState	=	Result(state,	a)	
	 	 	 minimaxOfChild	=	AlphaBetaWithHeuristics(childState,	table,	alpha,	beta,	depth+1)	
	 	 	 if	minimaxOfChild	<	bestMinimaxSoFar:	
	 	 	 	 bestMinimaxSoFar	=	minimaxOfChild	
	 	 	 	 bestMoveForState	=	a	
	 	 	 if	minimaxSoFar	<=	alpha:	 	 	 	 //	short-circuit,	prune	search	
	 	 	 	 return	bestMinimaxSoFar	
	 	 	 beta	=	min(beta,	bestMinimaxSoFar)	
	 	 table[state]	=	MinimaxInfo(bestMinimaxSoFar,	bestMoveForState)	
	 	 return	bestMinimaxSoFar	
	
	 	 	 	


