
Informed	(Heuristic)	Search	Algorithms	
	
The	generic	informed/heuristic	search	algorithm	is	called	best-first	search.		Best-first	search	works	just	like	uniform-cost	
search	(UCS)	except	we	store	our	frontier	as	a	priority	queue	sorted	by	an	evaluation	function	known	as	f(n).		Just	like	
UCS,	best-first	search	chooses	to	examine	nodes	with	the	lowest	values	of	f(n)	first.		Where	this	algorithm	differs	from	
UCS	is	that	f(n)	is	an	estimate	of	the	lowest-cost	of	path	from	the	initial	state,	to	the	state	at	node	n,	to	any	goal	state.		
Recall	that	UCS’s	frontier	is	sorted	by	g(n),	which	is	the	lowest	cost	of	the	path	from	the	initial	state	to	the	state	at	node	
n,	so	UCS	does	not	try	to	estimate	the	cost	of	the	path	after	n	towards	the	goal;	it	only	takes	into	account	the	cost	of	the	
path	before	n.	
	
Best-first	search	typically	uses	a	heuristic	function,	denoted	h(n),	as	an	estimate	of	the	cost	from	node	n	to	a	goal	state.		
By	changing	the	definition	of	f(n)	to	various	functions	involving	g(n)	and/or	h(n),	we	obtain	three	different	algorithms:	
	
If	we	define	f(n)	=	g(n),	best-first	search	degrades	to	uniform	cost	search.	
If	we	define	f(n)	=	h(n),	best-first	search	becomes	an	algorithm	called	greedy	best-first	search.	
If	we	define	f(n)	=	g(n)	+	h(n),	best-first	search	becomes	an	algorithm	called	A*	search	(or	just	A*,	pronounced	“A-star”).	
	
The	pseudocode	for	best-first	search	below	is	identical	to	UCS,	except	the	frontier’s	priority	queue	is	kept	sorted	by	f(n),	
rather	than	g(n).	
	
BEST-FIRST-SEARCH(problem)		 //	aka	A*,	greedy	best-first	search,	or	uniform	cost	search/Dijkstra,	for	various	f/g/h	
	 node	ß	a	new	node	corresponding	to	the	initial	state,	with	f/g/h	set	to	appropriate	values		
	 frontier	ß	a	priority	queue	of	nodes	sorted	by	f(n),	initialized	to	contain	only	node	
	 explored	ß	an	empty	set	of	states	
	 loop	forever:	
	 	 if	frontier	is	empty,	return	failure	
	 	 node	ß	pop(frontier)		//	remove	node	with	smallest	f(n)	value	from	frontier	
	 	 if	IS-GOAL(node.state),	then	return	the	corresponding	solution	
	 	 add	node.state	to	the	explored	set	
	 	 for	each	action	in	ACTIONS(node.state):	

child_node	ß	new	node	with		 child_node.state	=	RESULT(node.state,	action)	
child_node.g	=	node.g	+	COST(node.state,	action,	child_node.state)	[if	using	g]	
child_node.h	=	h(child_node)	 	 	 	 	 	 	 	 	 	 	 	 [if	using	h]	
child_node.f	=	[whatever	function	f(n)	is	defined	as]	

	 child_node.action	=	action	
	 child_node.parent	=	node	
if	child_node.state	is	not	in	explored	or	frontier:	

	 	 	 	 add	child_node	to	frontier	
	 	 	 else	if	child_node.state	is	already	in	frontier,	but	child_node.f	is	better	than	the	frontier’s:	
	 	 	 	 replace	that	frontier	node	with	child_node	
	
Admissibility	and	consistency	of	the	heuristic	function	
	
An	admissible	heuristic	is	one	that	never	overestimates	the	cost	to	reach	the	goal.		Because	h(n)	estimates	the	cost	
from	node	n	to	any	goal	state,	h(n)	must	never	be	greater	than	the	true	cost	from	n	along	the	cheapest	path	to	a	goal	
state.	
	
A	consistent	heuristic	is,	informally,	one	that	always	decreases	in	a	“consistent”	manner	as	one	moves	along	a	path	from	
the	initial	state	to	the	goal	state(s).		Formally,	a	heuristic	h(n)	is	consistent	if,	for	every	node	n	and	every	successor	n’	of	
n,	the	estimated	cost	of	reaching	the	goal	from	n	is	no	greater	than	the	step	cost	from	n	to	n’	plus	the	estimated	cost	of	
reaching	the	goal	from	n’:	 h(n)	<=	COST(n,	a,	n’)	+	h(n’)	 	 	 	 or	equivalently,		 	 h(n)	–	h(n’)	<=	COST(n,	a,	n’).	
	
Another	way	to	interpret	this	is	a	consistent	heuristic	never	overestimates	the	cost	of	a	single	step	from	n	to	n’.	


