
Generic	search	algorithms	
	
Tree	search	can	be	used	is	the	state	space	is	a	tree,	otherwise	graph	search	must	be	used.			All	search	algorithms	(BFS,	
DFS,	uniform-cost,	A*,	etc)	are	variations	of	one	of	these	(usually	graph	search).		The	only	difference	between	tree	
search	and	graph	search	is	that	tree	search	does	not	need	to	store	the	explored	set,	because	we	are	guaranteed	never	to	
attempt	to	visit	the	same	state	twice.	
	
TREE-SEARCH(problem):	
	 Initialize	the	frontier	using	the	initial	state	of	problem	
	 Loop	forever:	
	 	 If	frontier	is	empty,	return	failure	
	 	 Choose	a	leaf	node	from	the	frontier	and	remove	it	(from	the	frontier)	
	 	 If	the	node	contains	a	goal	state,	return	the	corresponding	solution	
	 	 If	the	node	did	not	contain	a	goal	state,	expand	the	chosen	node,	adding	the	resulting	nodes	to	the	frontier	
	
GRAPH-SEARCH(problem):	
	 Initialize	the	frontier	using	the	initial	state	of	the	problem	
	 Initialize	the	explored	set	to	empty	
	 Loop	forever:	
	 	 If	frontier	is	empty,	return	failure	
	 	 Choose	a	leaf	node	from	the	frontier	and	remove	it	(from	the	frontier)	
	 	 If	the	node	contains	a	goal	state,	return	the	corresponding	solution	
	 	 Add	the	node	to	the	explored	set	
	 	 If	the	node	did	not	contain	a	goal	state,	expand	the	chosen	node,	adding	the	resulting	nodes	to	the	frontier,		

but	only	if	the	resulting	node	is	not	already	in	the	frontier	or	the	explored	set	
			
Uninformed	search	algorithms	
	
Breadth-first	search:	Run	the	generic	graph	search	algorithm	with	the	frontier	stored	as	a	(LIFO)	queue.	
Depth-first	search:	Run	the	generic	graph	search	algorithm	with	the	frontier	stored	as	a	(FIFO)	stack.	
	
Uniform	cost	search	
We	have	a	node	data	structure	that	contains	a	state,	a	path-cost	(also	known	as	g),	a	pointer	to	the	parent	node,	and	the	
action	that	generated	this	state	from	the	parent	state.	
	
UNIFORM-COST-SEARCH(problem)		//	aka	Dijkstra’s	algorithm	
	 node	ß	a	new	node	corresponding	to	the	initial	state,	with	path-cost	(g)	=	0	
	 frontier	ß	a	priority	queue	of	nodes	sorted	by	path-cost	(g),	initialized	to	contain	only	node	
	 explored	ß	an	empty	set	of	states	
	 loop	forever:	
	 	 if	frontier	is	empty,	return	failure	
	 	 node	ß	pop(frontier)		//	remove	lowest	path-cost	node	from	frontier	(smallest	g)	
	 	 if	IS-GOAL(node.state),	then	return	the	corresponding	solution	
	 	 add	node.state	to	the	explored	set	
	 	 for	each	action	in	ACTIONS(node.state):	

child_node	ß	new	node	with		 child_node.state	=	RESULT(node.state,	action)	
child_node.g	=	node.g	+	COST(node.state,	action,	child_node.state)	

	 child_node.action	=	action	
	 child_node.parent	=	node	
if	child_node.state	is	not	in	explored	or	frontier:	

	 	 	 	 add	child_node	to	frontier	
	 	 	 else	if	child_node.state	is	already	in	frontier,	but	child_node.g	is	smaller	than	the	frontier’s:	
	 	 	 	 replace	that	frontier	node	with	child_node	


