State Space Search

Overview

* Problem-solving as search
* How to formulate an Al problem as search.

e Uninformed search methods

What is search?

Environmental factors needed

Static — The world does not change on its
own, and our actions don't change it.

Discrete — A finite number of individual
states exist rather than a continuous space of
options.

Observable — States can be determined by
observations.

Deterministic — Action have certain
outcomes.

The environment is all the information about the
world that remains constant while we are solving
the problem.

A state is a set of properties that define the
current conditions of the world our agent is in.

— Think of this as a snapshot of the world at a given
pointin time.

— The entire set of possible states is called the state
space.

The initial state is the state the agent begins in.

A goal state is a state where the agent may end
the search.

An agent may take different actions that will lead
the agent to new states.

Formulating problems as search

Canonical problem: route-finding

Sliding block puzzle (almost any kind of game
or puzzle can be formulated this way).

Roomba cleaning

Solitaire
What else?

Formulating problems as search

* Define:
— What do my states look like?
— What is my initial state?

— What are my goal state(s)?

— What is my cost function?
* How do | know how "good" a state or action is?
e Usually desirousto minimize, rather than maximize.

e Usually phrased as a function of the path from the
initial state to a goal state.

Formulating problems as search

* Solution:
— A path between the initial state and a goal state.
— Quality is measured by path cost.

— Optimal solutions have the lowest cost of any
possible path.

e State space search gives us graph searching

algorithms.
* Are we searc

ning a tree or a (true) graph?

BRUTE-FORCE
SOL-UT1ON:

o(n')

DYNAMIC
PROGRAMMING
ALGORITHMS:

O (n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?

\

1

~

SHUT THE
HEW VR

ilroom
eiving
Frazier Jelke |
Science Center
Lynx Statue Il
4‘ I
‘“phitheatre

T

There are two simultaneous graph-ish
structures used in search:

— (1) Tree or graph of underlying state space.
— (2) Tree maintaining the record of the current
search in progress (the search tree).

(1) does not depend on the current search
being run.

(1) is sometimes not even stored in memory
(too big!)

(2) always depends on the current search, and
is always stored in memory.

Search tree

* A node n of the search tree stores:
— a state (of the state space)
— a parent pointer to a node (usually)

— the action that got you from the parent to this
node (sometimes)

— the path cost g(n): cost of the path so far from the
initial state to n.

Search tree

* Frontier: a data structure storing the collection of

nodes that are available to be examined next in
the algorithm.

— Often represented as a stack, queue, or priority
gueue.

* Explored set: stores the collection of states we
have already examined (and therefore don’t need
to look at again).

— Often stored using a data structure that enables quick
look-up for membership tests.

Uninformed search methods

* These methods have no information about
which nodes are on promising paths to a
solution.

 Also called: blind search
e Question — What would have to be true for

our agent to need uninformed search?

— No knowledge of goal location; or

— No knowledge of current location or direction
(e.g., no GPS, inertial navigation, or compass)

How do you evaluate a search
strategy?

Completeness — Does it always find a
solution if one exists?

Optimality — Does it find the best solution?
Time complexity
Space complexity

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem [EEE——»
loop do queue, or priority
it the/frontier is empty then return failure ——
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the|frontier

function GRAPH-SEARCH(problem) returns a solytion, or failure
initialize the frontier using the initial state of problem

initialize the explored set|to be empty Explored set = hash
loop do table.

if the|frontier is empty then return failure
choose a leaf node and remove it from the/|frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the [frontier

only if not in the frontier or explored set

Search strategies

Breadth-first search
— Variant — Uniform-cost search

Depth-first search

Depth-limited search

terative deepening depth-first search

Breadth-first search

Choose shallowest node for expansion.
Data structure for frontier?
— Queue (regular)

Suppose we come upon the same state twice.
Do we re-add to the frontier?

— No.
Complete? Optimal? Time? Space?

Uniform-cost search

Choose node with lowest path cost g(n) for
expansion.

Data structure for frontier?

Su

Priority queue

opose we come upon the same state twice.

Do we re-add to the frontier?

— Yes. (And remove old node from frontier.)

Complete? Optimal? Time? Space?

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem. INITTIAL-STATE, PATH-COST =0
frontier «— a priority queue ordered by PATH-COST, with node as the only element

explored < an empty set
loop do
if EMPTY ?%(frontier) then retarn failure
node « POP(frontier) /* chooses the lowest-cost node in frontier */
if problem.GOAL-TEST(node.STATE) then return SOLUTION (node)
add node.STATE to explored
for each action in problem.ACTIONS(node. STATE) do
child «+— CHILD-NODE(preblem, node, action)
if child . STATE is not in ezplored or frontier then
frontier « INSERT(child, frontier)
else if child.STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Depth-first search

Choose deepest node to expand.
Data structure for frontier?

— Stack (or just use recursion)

Suppose we come upon the same state twice.
Do we re-add to the frontier?

— Yes. (And remove old node from frontier.)

Complete? Optimal? Time? Space?

Iterative deepening DFS

e Suppose we have a DFS algorithm that cuts off
at some maximum depth.

* Run this algorithm with max-depth=1.
— Then 2, then 3, ...

* Complete? Optimal? Time? Space?

Best-first search
(class of algorithms)

 Same algorithm as uniform-cost search.

e Uses a different evaluation function to sort
the priority queue.
* Need a heuristic function, h(n).

— h(n) = Estimate of lowest-cost path from node n to
a goal state.

A* Algorithm

e Sort priority queue by a function f(n), which
should be the estimated lowest-cost path
through node n.

e What is f?
— f(n) = g(n) + h(n)

Heuristics

* A heuristic function h(n) is admissible if it
never over-estimates the true lowest cost to a
goal state from node n.

e Equivalent: h(n) must always be less than or
equal to the true cost from node n to a goal.

 What happens if we just set h(n) = 0 for all n?

Heuristics

A heuristic function h(n) is consistent if values of

h(n) along any path in the search tree are non-
decreasing.

Equivalent: given a node n, and an action which
takes you from n to node n':

— h(n) <= cost(n, a, n') + h(n')

— h(n) = h(n') <= cost(n, a, n')

Consistencyimplies admissibility (but not the
other way around).

Difficult to invent heuristics that are admissible
but not consistent.

A* Algorithm

 A*is optimal if h(n) is consistent (and
therefore admissible).

— Tree search version of A* only needs an
admissible heuristic, but A* is usually used for
searching graphs.

Greedy best-first search

* Use just h(n) to sort priority queue.
e Complete?
 Optimal?

