
Markov	Chains



Toolbox

• Search:	uninformed/heuristic
• Adversarial	search
• Probability
• Bayes	nets
– Naive	Bayes	classifiers



Reasoning	over	time

• In	a	Bayes	net,	each	random	variable	(node)	
takes	on	one	specific	value.
– Good	for	modeling	static	situations.

• What	if	we	need	to	model	a	situation	that	is	
changing	over	time?



Example:	Comcast

• In	2004	and	2007,	Comcast	had	the	worst	
customer	satisfaction	rating	of	any	company	or	
gov't	agency,	including	the	IRS.

• I	have	cable	internet	service	from	Comcast,	and	
sometimes	my	router	goes	down.		If	the	router	is	
online,	it	will	be	online	the	next	day	with	
prob=0.8.		If	it's	offline,	it	will	be	offline	the	next	
day	with	prob=0.4.

• How	do	we	model	the	probability	that	my	router	
will	be	online/offline	tomorrow?		In	2	days?



Example:	Waiting	in	line
• You	go	to	the	Apple	Store	to	buy	the	latest	
iPhone.		Every	minute,	the	first	person	in	line	is	
served	with	prob=0.5.

• Every	minute,	a	new	person	joins	the	line	with	
probability

1	if	the	line	length=0
2/3	if	the	line	length=1
1/3	if	the	line	length=2
0	if	the	line	length=3

• How	do	we	model	what	the	line	will	look	like	in	1	
minute?		In	5	minutes?



Markov	Chains

• A	Markov	chain	is	a	type	of	Bayes	net	with	a	
potentially	infinite	number	of	variables	
(nodes).

• Each	variable	describes	the	state	of	the	system	
at	a	given	point	in	time	(t).

X0 X1 X2 X3



Markov	Chains

• Markov	property:	
P(Xt |	Xt-1,	Xt-2,	Xt-3,	…)	=	P(Xt |	Xt-1)

• Probabilities	for	each	variable	are	identical:
P(Xt |	Xt-1)	=	P(X1 |	X0)

X0 X1 X2 X3



Markov	Chains

• Since	these	are	just	Bayes	nets,	we	can	use	
standard	Bayes	net	ideas.
– Shortcut	notation:	Xi:j will	refer	to	all	variables	Xi
through	Xj,	inclusive.

• Common	questions:
–What	is	the	probability	of	a	specific	event	
happening	in	the	future?

–What	is	the	probability	of	a	specific	sequence	of	
events	happening	in	the	future?



An	alternate	formulation

• We	have	a	set	of	states,	S.
• The	Markov	chain	is	always	in	exactly	one	
state	at	any	given	time	t.

• The	chain	transitions	to	a	new	state	at	each	
time	t+1	based	only	on	the	current	state	at	
time	t.

pij =	P(Xt+1 =	j	|	Xt =	i)
• Chain	must	specify	pij for	all	i and	j,	and	
starting	probabilities	for	P(X0 =	j)	for	all	j.



Two	different	representations

• As	a	Bayes	net:

• As	a	state	transition	diagram	(similar	to	a	
DFA/NFA):

X0 X1 X2 X3

S1

S2

S3



Formulate	Comcast	in	both	ways

• I	have	cable	internet	service	from	Comcast,	
and	sometimes	my	router	goes	down.		If	the	
router	is	online,	it	will	be	online	the	next	day	
with	prob=0.8.		If	it's	offline,	it	will	be	offline	
the	next	day	with	prob=0.4.

• Let’s	draw	this	situation	in	both	ways.
• Assume	on	day	0,	probability	of	router	being	
down	is	0.5.



Comcast
• What	is	the	probability	my	router	is	offline	for	
3	days	in	a	row	(days	0,	1,	and	2)?
– P(X0=off,	X1=off,	X2=off)?	
– P(X0=off)	*	P(X1=off|X0=off)	*	P(X2=off|X1=off)
– P(X0=off)	*	poff,off *	poff,off

P (x0:t) = P (x0)
tY

i=1

P (xi | xi�1)



More	Comcast

• Suppose	I	don’t	know	if	my	router	is	online	
right	now	(day	0).		What	is	the	prob it	is	offline	
tomorrow?
– P(X1=off)
– P(X1=off)	=	P(X1=off,	X0=on)	+	P(X1=off,	X0=off)
– P(X1=off)	=	P(X1=off|X0=on)	*	P(X0=on)	

+	P(X1=off|X0=off)	*	P(X0=off)

P (X
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More	Comcast

• Suppose	I	don’t	know	if	my	router	is	online	
right	now	(day	0).		What	is	the	prob it	is	offline	
the	day	after	tomorrow?
– P(X2=off)
– P(X2=off)	=	P(X2=off,	X1=on)	+	P(X2=off,	X1=off)
– P(X2=off)	=	P(X2=off|X1=on)	*	P(X1=on)	

+	P(X2=off|X1=off)	*	P(X1=off)

P (X
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Markov	chains	with	matrices
• Define	a	transition	matrix	for	the	chain:

• Each	row	of	the	matrix	represents	the	
transition	probabilities	leaving a	state.

• Let	vt =	a	row	vector	representing	the	
probability	that	the	chain	is	in	each	state	at	
time	t.

• vt =	vt-1	*	T

T =


0.8 0.2
0.6 0.4

�



Mini-forward	algorithm

• Suppose	we	are	given	the	values	of	X0,	X1,	...	
Xt,	and	we	want	to	know	Xt+1.

• P(Xt+1 |	X0,	X1,	...,	Xt)
• Row	vector	v0 =	P(X0)
• v1 =	v0	*	T
• v2 =	v1 *	T	=	v0 *	T	*	T	=	v0 *	T2

• v3 =	v0 *	T3

• vt =	v0 *	Tt



Back	to	the	Apple	Store...
• You	go	to	the	Apple	Store	to	buy	the	latest	
iPhone.		Every	minute,	the	first	person	in	line	is	
served	with	prob=0.5.

• Every	minute,	a	new	person	joins	the	line	with	
probability

1	if	the	line	length=0
2/3	if	the	line	length=1
1/3	if	the	line	length=2
0	if	the	line	length=3

• Model	this	as	a	Markov	chain,	assuming	the	line	
starts	empty.		Draw	the	state	transition	diagram.		

• What	is	T?		What	is	v0?



• Markov	chains	are	pretty	easy!
• But	sometimes	they	aren't	realistic…

• What	if	we	can't	directly	know	the	states	of	
the	model,	but	we	can	see	some	indirect	
evidence	resulting	from	the	states?



Weather

• Regular	Markov	chain
– Each	day	the	weather	is	rainy	or	sunny.		
– P(Xt =	rain	|	Xt-1 =	rain)	=	0.7
– P(Xt =	sunny|	Xt-1 =	sunny)	=	0.9

• Twist:
– Suppose	you	work	in	an	office	with	no	windows.		
All	you	can	observe	is	weather	your	colleague	
brings	their	umbrella	to	work.



Hidden	Markov	Models

• The	X's	are	the	state	variables	(never	directly	
observed).

• The	E's	are	evidence	variables.

X0 X1 X2 X3

E1 E2 E3



Common	real-world	uses

• Speech	processing:
– Observations	are	sounds,	states	are	words.

• Localization:
– Observations	are	inputs	from	video	cameras	or	
microphones,	state	is	the	actual	location.

• Video	processing	(example):
– Extracting	a	human	walking	from	each	video	
frame.		Observations	are	the	frames,	states	are	
the	positions	of	the	legs.



Hidden	Markov	Models

• P(Xt |	Xt-1,	Xt-2,	Xt-3,	…)	=	P(Xt |	Xt-1)
• P(Xt |	Xt-1)	=	P(X1 |	X0)
• P(Et |	X0:t,	E0:t-1)	=	P(Et |	Xt)
• P(Et |	Xt)	=	P(E1 |	X1)

X0 X1 X2 X3

E1 E2 E3



Hidden	Markov	Models

• What	is	P(X0:t,	E1:t)?

X0 X1 X2 X3

E1 E2 E3

P (X0)
tY

i=1

P (Xi | Xi�1)P (Ei | Xi)



Common	questions
• Filtering:	Given	a	sequence	of	observations,	
what	is	the	most	probable	current state?
– Compute	P(Xt |	e1:t)

• Prediction:	Given	a	sequence	of	observations,	
what	is	the	most	probable	future state?
– Compute	P(Xt+k |	e1:t)	for	some	k	>	0

• Smoothing:	Given	a	sequence	of	observations,	
what	is	the	most	probable	past state?
– Compute	P(Xk |	e1:t)	for	some	k	<	t



Common	questions
• Most	likely	explanation:	Given	a	sequence	of	
observations,	what	is	the	most	probable	
sequence	of	states?
– Compute	

• Learning:	How	can	we	estimate	the	transition	
and	sensor	models	from	real-world	data?	
(Future	machine	learning	class?)

argmax

x1:t

P (x1:t | e1:t)



Hidden	Markov	Models

• P(Rt =	yes	|	Rt-1 =	yes)	=	0.7
P(Rt =	yes	|	Rt-1 =	no)	=	0.1

• P(Ut =	yes	|	Rt =	yes)	=	0.9
P(Ut =	yes	|	Rt =	no)	=	0.2

R0 R1 R2 R3

U1 U2 U3



Filtering

• Filtering	is	concerned	with	finding	the	most	
probable	"current"	state	from	a	sequence	of	
evidence.

• Let's	compute	this.



Forward	algorithm

• Recursive	computation	of	the	probability	
distribution	over	current	states.

• Say	we	have	P(Xt |	e1:t)

P (Xt+1 | e1:t+1) =

↵P (e
t+1 | X

t+1)
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Forward	algorithm

• Markov	chain	version:

• Hidden	Markov	model	version:

P (Xt+1 | e1:t+1) =

↵P (e
t+1 | X

t+1)
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Forward	algorithm

• Today	is	Day	2,	and	I've	been	pulling	all-
nighters	for	two	days!

• My	colleague	brought	their	umbrella	on	days	
1	and	2.

• What	is	the	probability	it	is	raining	today?



Matrices	to	the	rescue!

• Define	a	transition	matrix	T	as	normal.
• Define	a	sequence	of	observation	matrices	O1
through	Ot.

• Each	O	matrix	is	a	diagonal	matrix	with	the	
entries	corresponding	to	that	particular	
observation	given	each	state.

where	each	f	is	a	row	vector	containing	the	
probability	distribution	at	state	t.

f1:t+1 = ↵f1:t · T ·Ot+1



f1:0	=	P(R0)	=	[0.5,	0.5]
f1:1	=	P(R1	|	u1)	=	𝛂 *	f1:0	*	T	*	O1	=	𝛂[0.36,	0.12]	=	[0.75,	0.25]
f1:2	=	P(R2	|	u1,	u2)	=	𝛂 *	f1:1	*	T	*	O2	=	𝛂[0.495,	0.09]	=	[.846,	.154]

T  = [0.7, 0.3]
[0.1, 0.9]

O1 = [0.9, 0.0]
[0.0, 0.2]

O2 = [0.9, 0.0]
[0.0, 0.2]

f1:0=[0.5,	0.5] f1:1=[0.75,	0.25]

R0 R1 R2

U1 U2

f1:2=[0.846,	0.154]



Forward	algorithm

• Note	that	the	forward	algorithm	only	gives	
you	the	probability	of	Xt taking	into	account	
evidence	at	times	1	through	t.

• In	other	words,	say	you	calculate	P(X1 |	e1)	
using	the	forward	algorithm,	then	you	
calculate	P(X2 |	e1,	e2).		
– Knowing	e2	changes	your	calculation	of	X1.
– That	is,	P(X1 |	e1)	!=	P(X1 |	e1,	e2)



Backward	algorithm

• Updates	previous	probabilities	to	take	into	
account	new	evidence.

• Calculates	P(Xk |	e1:t)	for	k	<	t	
– aka	smoothing.



Backward	matrices

• Main	equations:

(column	vec of	1s)

bk:t = T ·Ok · bk+1:t

bt+1:t = [1; · · · ; 1]

P (Xk | e1:t) = ↵f1:k ⇥ bk+1:t



b3:2	=	[1;	1]
b2:2	=	T	*	O2	*	b3:2	=	[0.69,	0.27]
P(R1	|	u1,	u2)	=	𝛂 f1:1	x	b2:2	=	𝛂[0.5175,	0.0675]	=	[0.885,	0.115]
b1:2	=	T	*	O1	*	b2:2	=	[0.4509,	0.1107]
P(R0	|	u1,	u2)	=	𝛂 f1:0	x	b1:2	=	𝛂[0.5175,	0.0675]	=	[0.803,	0.197]

T  = [0.7, 0.3]
[0.1, 0.9]

O1 = [0.9, 0.0]
[0.0, 0.2]

O2 = [0.9, 0.0]
[0.0, 0.2]

f1:0=[0.5,	0.5] f1:1=[0.75,	0.25]

R0 R1 R2

U1 U2

f1:2=[0.846,	0.154]
b3:2=[1;	1]b1:2=[0.4509,	0.1107] b2:2=[0.69,	0.27]

mult=[0.885,	0.115]mult=[0.803,	0.197]



Forward-backward	algorithm

Compute	these	forward	from	X0 to	wherever	
you	want	to	stop	(Xt)

Compute	these	backwards	from	Xt+1 to	X0.

P (Xk | e1:t) = ↵f1:k ⇥ bk+1:t

f1:0 = P (X0)

f1:t+1 = ↵f1:t · T ·Ot+1

bk:t = T ·Ok · bk+1:t

bt+1:t = [1; · · · ; 1]


