
Reinforcement	Learning



Environments

• Fully-observable	vs partially-observable
• Single	agent	vs multiple	agents
• Deterministic	vs stochastic
• Episodic	vs sequential
• Static	or	dynamic
• Discrete	or	continuous



What	is	reinforcement	learning?

• Three	machine	learning	paradigms:
– Supervised	learning
– Unsupervised	learning	(overlaps	w/	data	mining)
– Reinforcement	learning

• In	reinforcement	learning,	the	agent	receives	
incremental	pieces	of	feedback,	called	
rewards,	that	it	uses	to	judge	whether	it	is	
acting	correctly	or	not.



Examples	of	real-life	RL

• Learning	to	play	chess.
• Animals	(or	toddlers)	learning	to	walk.
• Driving	to	school	or	work	in	the	morning.

• Key	idea:	Most	RL	tasks	are	episodic,	meaning	
they	repeat	many	times.
– So	unlike	in	other	AI	problems	where	you	have	
one	shot	to	get	it	right,	in	RL,	it's	OK	to	take	time	
to	try	different	things	to	see	what's	best.



n-armed	bandit	problem
• You	have	n	slot	machines.
• When	you	play	a	slot	machine,	
it	provides	you	a	reward	(negative	
or	positive)	according	to	some	fixed	
probability	distribution.

• Each	machine	may	have	a	different	
probability	distribution,	and	you	don't	know	the	
distributions	ahead	of	time.

• You	want	to	maximize	the	amount	of	reward	
(money)	you	get.

• In	what	order	and	how	many	times	do	you	play	
the	machines?



RL	problems

• Every	RL	problem	is	structured	similarly.
• We	have	an	environment,	which	consists	of	a	
set	of	states,	and	actions that	can	be	taken	in	
various	states.		
– Environment	is	often	stochastic	(there	is	an	
element	of	chance).

• Our	RL	agent	wishes	to	learn	a	policy,	π,	a	
function	that	maps	states	to	actions.
– π(s)	tells	you	what	action	to	take	in	a	state	s.



What	is	the	goal	in	RL?

• In	other	AI	problems,	the	"goal"	is	to	get	to	a	
certain	state.		Not	in	RL!

• A RL	environment	gives	feedback	every	time	the	
agent	takes	an	action.		This	is	called	a	reward.
– Rewards	are	usually	numbers.
– Goal:	Agent	wants	to	maximize	the	amount	of	reward	
it	gets	over	time.

– Critical	point:	Rewards	are	given	by	the	environment,	
not	the	agent.



Mathematics	of	rewards
• Assume	our	rewards	are	r0,	r1,	r2,	…
• What	expression	represents	our	total	
rewards?

• How	do	we	maximize	this?	Is	this	a	good	idea?
• Use	discounting:	at	each	time	step,	the	reward	
is	discounted	by	a	factor	of	γ (called	the	
discount	rate).

• Future	rewards	from	time	t	=	
rt + �rt+1 + �2rt+2 + · · · =

1X

k=0

�krt+k



Markov	Decision	Processes
• An	MDP	has	a	set	of	states,	S,	and	a	set	of	
actions,	A(s),	for	every	state	s	in	S.

• An	MDP	encodes	the	probability	of	
transitioning	from	state	s	to	state	s'	on	action	
a:		P(s'	|	s,	a)

• RL	also	requires	a	reward	function,	usually	
denoted	by	R(s,	a,	s')	=	reward	for	being	in	
state	s,	taking	action	a,	and	arriving	in	state	s'.

• An	MDP	is	a	Markov	chain	that	allows	for	
outside	actions	to	influence	the	transitions.



• Grass	gives	a	reward	of	0.
• Monster	gives	a	reward	of	-5.
• Pot	of	gold	gives	a	reward	of	+10	(and	ends	game).
• Two	actions	are	always	available:

– Action	A:	50%	chance	of	moving	right	1	square,
50%	chance	of	staying	where	you	are.

– Action	B:	50%	chance	of	moving	right	2	squares,
50%	chance	of	moving	left	1	square.

– Any	movement	that	would	take	you	off	the	board	moves	you	as	
far	in	that	direction	as	possible	or	keeps	you	where	you	are.



Value	functions
• Almost	all	RL	algorithms	are	based	around	
computing,	estimating,	or	learning	value	functions.

• A	value	function	represents	the	expected	future	
reward from	either	a	state,	or	a	state-action	pair.
– Vπ	(s):	If	we	are	in	state	s,	and	follow	policy	π,	what	is	the	
total	future	reward	we	will	see,	on	average?

– Qπ	(s,	a):	If	we	are	in	state	s,	and	take	action	a,	then	
follow	policy	π,	what	is	the	total	future	reward	we	will	
see,	on	average?



Optimal	policies

• Given	an	MDP,	there	is	always	a	"best"	policy,	
called	π*.

• The	point	of	RL	is	to	discover	this	policy	by	
employing	various	algorithms.
– Some	algorithms	can	use	sub-optimal	policies	to	
discover	π*.

• We	denote	the	value	functions	corresponding	
to	the	optimal	policy	by	V*(s)	and	Q*(s,	a).



Bellman	equations

• The	V*(s)	and	Q*(s,	a)	
functions	always	satisfy	
certain	recursive	
relationships	for	any	MDP.

• These	relationships,	in	the	
form	of	equations,	are	
called	the	Bellman	
equations.



Recursive	relationship	of	V*	and	Q*:

V ⇤
(s) = max

a
Q⇤

(s, a)

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

The	expected	future	rewards	from	a	state	s	is	equal	to	
the	expected	future	rewards	obtained	by	choosing	the	
best	action	from	that	state.

The	expected	future	rewards	obtained	by	taking	an	
action	from	a	state	is	the	weighted	average	of	the	
expected	future	rewards	from	the	new	state.



Bellman	equations

• No	closed-form	solution	in	general.
• Instead,	most	RL	algorithms	use	these	equations	
in	various	ways	to	estimate	V*	or	Q*.		An	optimal	
policy	can	be	derived	from	either	V*	or	Q*.

V ⇤
(s) = max

a

X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤

(s0)
⇤

Q⇤
(s, a) =

X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �max

a0
Q⇤

(s0, a0)
⇤



RL	algorithms

• A	main	categorization	of	RL	algorithms	is	
whether	or	not	they	require	a	full	model	of	
the	environment.

• In	other	words,	do	we	know	P(s'	|	s,	a)	and	
R(s,	a,	s')	for	all	combinations	of	s,	a,	s'?
– If	we	have	this	information	(uncommon	in	the	real	
world),	we	can	estimate	V*	or	Q*	directly	with	
very	good	accuracy.

– If	we	don't	have	this	information,	we	can	estimate	
V*	or	Q*	from	experience	or	simulations.



Value	iteration

• Value	iteration	is	an	algorithm	that	computes	
an	optimal	policy,	given	a	full	model	of	the	
environment.

• Algorithm	is	derived	directly	from	the	Bellman	
equations	(usually	for	V*,	but	can	use	Q*	as	
well).



Value	iteration
• Two	steps:
• Estimate	V(s)	for	every	state.
– For	each	state:

• Simulate	taking	every	possible	action	from	that	state	and	
examine	the	probabilities	for	transitioning	into	every	
possible	successor	state.		Weight	the	rewards	you	would	
receive	by	the	probabilities	that	you	receive	them.

• Find	the	action	that	gave	you	the	most	reward,	and	
remember	how	much	reward	it	was.

• Compute	the	optimal	policy	by	doing	the	first	
step	again,	but	this	time	remember	the	actions	
that	give	you	the	most	reward,	not	the	reward	
itself.



Value	iteration
• Value	iteration	maintains	a	table	of	V	values,	
one	for	each	state.		Each	value	V[s]	eventually	
converges	to	the	true	value	V*(s).



• Grass	gives	a	reward	of	0.
• Monster	gives	a	reward	of	-5.
• Pot	of	gold	gives	a	reward	of	+10	(and	ends	game).
• Two	actions	are	always	available:

– Action	A:	50%	chance	of	moving	right	1	square,
50%	chance	of	staying	where	you	are.

– Action	B:	50%	chance	of	moving	right	2	squares,
50%	chance	of	moving	left	1	square.

– Any	movement	that	would	take	you	off	the	board	moves	you	as	
far	in	that	direction	as	possible	or	keeps	you	where	you	are.

• γ (gamma)	=	0.9



V[s]	values	converge	to:

6.47												7.91												8.56																0

How	do	we	use	these	to	compute	π(s)?		



Computing	an	optimal	policy	from	V[s]

• Last	step	of	the	value	iteration	algorithm:

• In	other	words,	run	one	last	time	through	the	
value	iteration	equation	for	each	state,	and	
pick	the	action	a	for	each	state	s	that	
maximizes	the	expected	reward.

⇡(s) = argmax

a

X

s0

P (s0 | s, a)[R(s, a, s0) + �V [s0]]



V[s]	values	converge	to:

6.47												7.91												8.56																0
Optimal	policy:

A																		B																		B																	---



Review

• Value	iteration	requires	a	perfect	model	of	the	
environment.
– You	need	to	know	P(s'	|	s,	a)	and	R(s,	a,	s')	ahead	
of	time	for	all	combinations	of	s,	a,	and	s'.

– Optimal	V	or	Q	values	are	computed	directly	from	
the	environment	using	the	Bellman	equations.

• Often	impossible	or	impractical.



Simple	Blackjack
• Costs	$5	to	play.
• Infinite	deck	of	shuffled	cards,	labeled	1,	2,	3.
• You	start	with	no	cards.		At	every	turn,	you	can	
either	"hit"	(take	a	card)	or	"stay"	(end	the	game).		
Your	goal	is	to	get	to	a	sum	of	6	without	going	
over,	in	which	case	you	lose	the	game.

• You	make	all	your	decisions	first,	then	the	dealer	
plays	the	same	game.

• If	your	sum	is	higher	than	the	dealer's,	you	win	
$10	(your	original	$5	back,	plus	another	$5).		If	
lower,	you	lose	(your	original	$5).		If	the	same,	
draw	(get	your	$5	back).



Simple	Blackjack
• To	set	this	up	as	an	MDP,	we	need	to	remove	the	
2nd player	(the	dealer)	from	the	MDP.

• Usually	at	casinos,	dealers	have	simple	rules	they	
have	to	follow	anyway	about	when	to	hit	and	
when	to	stay.

• Is	it	ever	optimal	to	"stay"	from	S0-S3?
• Assume	that	on	average,	if	we	"stay"	from:
– S4,	we	win	$3	(net	$-2).
– S5,	we	win	$6	(net	$1).
– S6,	we	win	$7	(net	$2).

• Do	you	even	want	to	play	this	game?



Simple	Blackjack
• What	should	gamma	be?
• Assume	we	have	finished	one	round	of	value	
iteration.

• Complete	the	second	round	of	value	iteration	
for	S1—S6.



Learning	from	experience

• What	if	we	don't	know	the	exact	model	of	the	
environment,	but	we	are	allowed	to	sample
from	it?
– That	is,	we	are	allowed	to	"practice"	the	MDP	as	
much	as	we	want.

– This	echoes	real-life	experience.
• One	way	to	do	this	is	temporal	difference	
learning.



Temporal	difference	learning

• We	want	to	compute	V(s)	or	Q(s,	a).
• TD	learning	uses	the	idea	of	taking	lots	of	
samples	of	V	or	Q	(from	the	MDP)	and	
averaging	them	to	get	a	good	estimate.

• Let's	see	how	TD	learning	works.



Example:	Time	to	drive	home

• Suppose	for	ten	days	I	record	how	long	it	takes	
me	to	drive	home	after	work.

• On	the	eleventh	day,	what	time	should	I	
predict	my	travel	time	home	to	be?



Example:	Time	to	drive	home

• Basic	TD	equation:
• V(s)	=	V(s)	+	𝛼(reward	– V(s))
• But	what	if	our	reward	comes	in	pieces,	not	all	
at	once?

• total	reward	=	one	step	reward	+	rest	of	reward
• total	reward	=	rt +	𝛾V(s')
• V(s)	=	V(s)	+	𝛼[rt +	𝛾V(s')	– V(s)]



Q-learning

• Q-learning	is	a	temporal	difference	learning	
algorithm	that	learns	optimal	values	for	Q	
(instead	of	V,	as	value	iteration	did).

• The	algorithm	works	in	episodes,	where	the	
agent	"practices"	(aka	samples)	the	MDP	to	
learn	which	actions	obtain	the	most	rewards.

• Like	value	iteration,	table	of	Q	values	
eventually	converge	to	Q*.
(under	certain	conditions)



• Notice	the	Q[s,	a]	update	equation	is	very	similar	
to	the	driving	time	update	equation.
– (The	extra	γmaxa' Q[s',	a']	piece	is	to	handle	future	
rewards.)

– alpha	(0	<	α	<=	1)	is	called	the	learning	rate;	it	controls	
how	fast	the	algorithm	learns.		In	stochastic	
environments,	alpha	is	usually	small,	such	as	0.1.



• Note:	The	"choose	action"	step	does	not	mean	you	
choose	the	best	action	according	to	your	table	of	Q	
values.

• You	must	balance	exploration	and	exploitation;	like	in	
the	real	world,	the	algorithm	learns	best	when	you	
"practice"	the	best	policy	often,	but	sometimes	explore	
other	actions	that	may	be	better	in	the	long	run.



• Often	the	"choose	action"	step	uses	policy	that	mostly	
exploits	but	sometimes	explores.

• One	common	idea:	(epsilon-greedy	policy)
– With	probability	1	- ε,	pick	the	best	action	(the	"a"	that	
maximizes	Q[s,	a].

– With	probability	ε,	pick	a	random	action.
• Also	common	to	start	with	large	ε and	decrease	over	
time	while	learning.



• What	makes	Q-learning	so	amazing	is	that	the	
Q-values	still	converge	to	the	optimal	Q*	
values	even	though	the	algorithm	itself	is	not	
following	the	optimal	policy!



Q-learning	with	Blackjack

• Update	formula:

• Sample	episodes	(states	and	actions):
S0	è Hit	è S3	è Stay	è End
S0	è Hit	è S3	è Hit	è S6	è Stay	è End
S0	è Hit	è S3	è Hit	è S5	è Stay	è End

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i



2-Player	Q-learning
Normal	update	equation:

Normally	we	always	maximize	our	rewards.		
Consider	2-player	Q-learning	with	player	A	
maximizing	and	player	B	minimizing	(as	in	
minimax).		

Why	does	this	break	the	update	equation?

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i



2-Player	Q-learning
Player	A's	update	equation:

Player	B's	update	equation:

Player	A's	optimal	policy	output:

Player	B's	optimal	policy	output:

Q[s, a] Q[s, a] + ↵
h
r + �min

a0
Q[s0, a0]�Q[s, a]

i

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

⇡(s) = argmax

a
Q[s, a]

⇡(s) = argmin
a

Q[s, a]


