
Naïve	Bayes	Classifiers



Review

• Let	event	D	=	data	we	have	observed.
• Let	events	H1,	…,	Hn be	events	representing	
the	n hypotheses	we	want	to	choose	between.

• Use	D	to	pick	the	"best"	H.

• There	are	two	"standard"	ways	to	do	this,	
depending	on	what	information	we	have	
available.



Maximum	likelihood	hypothesis

• The	maximum	likelihood	hypothesis	(HML)	is	
the	hypothesis	that	maximizes	the	probability	
of	the	data	given	that	hypothesis.

• How	to	use	it:	compute	P(D	|	Hi)	for	each	
hypothesis	(1	through	n)	and	select	the	one	
with	the	greatest	value.

HML
= argmax

i
P (D | Hi)



Maximum	a	posteriori	(MAP)	
hypothesis

• The	MAP	hypothesis	is	the	hypothesis	that	
maximizes	the	posterior	probability:

• The	P(D	|	Hi)	terms	are	now	weighted by	the	
hypothesis	prior	probabilities.

HMAP
= argmax

i
P (Hi | D)

= argmax

i

P (D | Hi)P (Hi)

P (D)

/ argmax

i
P (D | Hi)P (Hi)



Posterior	probability
• If	you	need	the	actual	posterior	probability	for	
some	hypothesis	Hi:

P (Hi | D) =
P (D | Hi)P (Hi)

P (D)

=
P (D | Hi)P (Hi)P

j P (D,Hj)

=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)



Combining	evidence

• If	we	have	multiple	pieces	of	data/evidence	(say	
two	pieces),	then	we	need	to	compute	or	estimate

which	is	often	hard.
• Instead,	we	assume all	pieces	of	evidence	are	
conditionally	independent	given	a	hypothesis:

• This	assumption	is	most	likely	not	true,	but	we	do	
it	to	make	our	lives	easier.

P (D1, D2 | Hi) = P (D1 | Hi)P (D2 | Hi)

P (D1, D2 | Hi)



Combining	evidence	(m pieces)

where

P (Hi | D1, . . . , Dm) =
P (D1, . . . , Dm | Hi)P (Hi)

P (D1, . . . , Dm)

=

h
P (D1 | Hi) · · ·P (Dm | Hi)

i
P (Hi)

P (D1, . . . , Dm)

=

hQm
j=1 P (Dj | Hi)

i
P (Hi)

P (D1, . . . , Dm)

P (D1 . . . , Dm) =
nX

k=1

 h mY

j=1

P (Dj | Hk)
i
P (Hk)

!



Classification
• Classification	is	the	problem	of	identifying	which	of	
a	set	categories	(called	classes)	a	particular	item	
belongs	in.

• Lots	of	real-world	problems	are	classification	
problems:
– spam	filtering	 (classes:	spam/not-spam)
– handwriting	 recognition	&	OCR	(classes:	one	for	each	
letter,	number,	or	symbol)

– text	classification,	 image	classification,	music	
classification,	etc.

• Almost	any	problem	where	you	are	assigning	a	
label	to	items	can	be	set	up	as	a	classification	task.



Classification
• An	algorithm	 that	does	classification	 is	called	a	

classifier.	 	Classifiers	take	an	item	as	input	and	output	
the	class	it	thinks	that	item	belongs	to.		That	is,	the	
classifier	predicts a	class	for	each	item.

• Lots	of	classifiers	are	based	on	probabilities	and	
statistical	 inference:
– The	classes become	the	hypotheses	being	tested.
– The	item	being	classified	is	turned	 into	a	collection	of	data	
called	features.		Useful	features	are	attributes	of	the	item	
that	are	strongly	correlated	with	certain	classes.

– The	classification	algorithm	is	usually	ML	or	MAP,	
depending	on	what	data	we	have	available.



Example:	Spam	classification
• New	email	arrives:	is	it	spam	or	not	spam?
• A	useful	set	of	features	might	be	the	presence	or	
absence	of	various	words	in	the	email:
– F1,	~F1:	"Kirlin"	appears/does	not	appear
– F2,	~F2:	"viagra"	appears/does	not	appear
– F3,	~F3:	"cash"	appears/does	 not	appear

• Let's	say	our	new	email	contains	"Kirlin"	and	
"cash,"	but	not	"viagra."

• The	features	for	this	email	are	F1,	~F2,	and	F3.
• Let's	use	MAP	for	classification.



Example:	Spam	classification
• Features	=	Data	=	D	=	F1,	~F2,	F3.

HMAP
= argmax

i
P (D | Hi)P (Hi)

HMAP

= argmax

i2{spam,not-spam}
P (F

1

,¬F
2

, F
3

| Hi)P (Hi)



Learning	probabilities	from	data

• To	use	MAP,	we	need	to	calculate	or	estimate	
P(Hi)	and	P(F1,	~F2,	F3	|	Hi)	for	each	i.

• In	other	words,	we	need	to	know:
– P(spam)
– P(not-spam)
– P(F1,	~F2,	F3	|	spam)
– P(F1,	~F2,	F3	|	not-spam)



Learning	probabilities	from	data

• Let's	assume	we	have	access	to	a	large	
number	of	old	emails	that	are	correctly	
labeled	as	spam/not-spam.

• How	can	we	estimate	P(spam)?

P (spam) =

# of emails labeled as spam

total # of emails



Learning	probabilities	from	data

• Let's	assume	we	have	access	to	a	large	
number	of	old	emails	that	are	correctly	
labeled	as	spam/not-spam.

• How	can	we	estimate	P(F1,	~F2,	F3	|	spam)?

• Why	is	this	probably	going	to	be	a	very	rough	
estimate?

P (F1,¬F2, F3 | spam) =

# of spam emails with those exact features

total # of spam emails



Conditional	independence	to	the	rescue!
• It	is	unlikely	that	our	set	of	old	emails	contains	
many	messages	with	that	exact	set	of	features.

• Let's	make	an	assumption	that	all	of	our	features	
are	conditionally	independent	of	each	other,	
given	the	hypothesis	(spam/not-spam).

• These	probabilities	are	easier	to	get	good	
estimates	for!

• A	classifier	that	makes	this	assumption	is	called	a	
Naïve	Bayes	classifier.

P (F1,¬F2, F3 | spam) =

P (F1 | spam) · P (¬F2 | spam) · P (F3 | spam)



Learning	probabilities	from	data

• So	now	we	need	to	estimate	P(F1	|	spam)	
instead	of	P(F1,	~F2,	F3	|	spam).

• Equivalently,	how	can	we	estimate	the	
probability	of	seeing	"Kirlin"	in	an	email	given	
that	the	email	is	spam?

P (F1 | spam) =

# of spam emails with the word Kirlin

total # of spam emails



Example



Another	problem	to	handle…
• What	if	we	see	a	word	we've	never	encountered	
before?		What	happens	to	its	probability	
estimate?		(and	why	is	this	bad?)

• Probability	of	zero	destroys	the	entire	calculation!

P (spam | F1, . . . , Fm) =

hQm
j=1 P (Fj | spam)

i
P (spam)

P (F1, . . . , Fm)

P (Fj | spam) =

# of spam emails with word Fj

total # of spam emails



Another	problem	to	handle…

• Fix	the	estimates:

• This	is	called	smoothing.		Removes	the	possibility	
of	a	zero	probability	wiping	out	the	entire	
calculation.

• Simulates	adding	two	additional	spam	emails,	one	
containing	every	word,	and	containing	no	words.
– We	would	also	smooth	for	non-spam:	adding	two	non-
spam	emails,	one	with	all	words,	one	with	no	words.

P (Fj | spam) =

# of spam emails with word Fj + 1

total # of spam emails + 2



Summary	of	Naïve	Bayes

• Assumes	the	data	is	a	collection	of	features,	
and	each	feature	is	conditionally	independent	
of	all	other	features	given	the	hypothesis.

• Classifies	using	MAP	hypothesis.



Summary	of	Naïve	Bayes
• Hypotheses:	H1 through	Hn.
• Features	(data):	F1 through	Fm.

HMAP
= argmax

i
P (D | Hi)P (Hi)

= argmax

i
P (F1, . . . , Fm | Hi)P (Hi)

= argmax

i

h
P (F1 | Hi) · · ·P (Fm | Hi)

i
P (Hi)

= argmax

i

h mY

j=1

P (Fj | Hi)

i
P (Hi)



Summary	of	Naïve	Bayes

• Probabilities	needed	to	be	determined	(either	
given	to	you	or	estimated	from	data):

• P(Hi)	for	i =	1	to	n.
• P(Fj |	Hi)	for	j	=	1	to	m	and	i =	1	to	n.



Summary	of	Naïve	Bayes	(for	email)

• Naïve	Bayes	classifies	using	MAP:

• Compute	this	for	spam	and	for	not-spam;	see	
which	is	bigger.

HMAP
= argmax

i
P (D | Hi)P (Hi)

= argmax

i2{spam,not-spam}
P (F

1

, . . . , Fm | Hi)P (Hi)

= argmax

i2{spam,not-spam}

h
P (F

1

| Hi) · · ·P (Fm | Hi)

i
P (Hi)

= argmax

i2{spam,not-spam}

h mY

j=1

P (Fj | Hi)

i
P (Hi)



Summary	of	Naïve	Bayes	(for	email)

• Estimating	the	prior for	each	hypothesis:

• Estimating	the	probability	of	a	feature	given	a	
class	(aka	likelihood):

P (Fj | Hi) =
# of Hi emails with word Fj + 1

total # of Hi emails + 2

P (Hi) =
# of emails labeled as Hi

total # of emails


