Naive Bayes Classifiers



Review

Let event D = data we have observed.

Let events H,, ..., H,, be events representing
the n hypotheses we want to choose between.

Use D to pick the "best" H.

There are two "standard" ways to do this,
depending on what information we have
available.



Maximum likelihood hypothesis

* The maximum likelihood hypothesis (HM!) is
the hypothesis that maximizes the probability
of the data given that hypothesis.

HY" = argmax P(D | H;)

* How to use it: compute P(D | H,) for each
hypothesis (1 through n) and select the one
with the greatest value.



Maximum a posteriori (MAP)
hypothesis

* The MAP hypothesis is the hypothesis that
maximizes the posterior probability:
HMAY — argmax P(H; | D)
" P(D| H,)P(H,)
— arggnax P(D)
o argmax P(D | H;)P(H;)

* The P(D | H)) terms are now weighted by the
hypothesis prior probabilities.



Posterior probability

* |f you need the actual posterior probability for
some hypothesis H.:

P(D | H;)P(H;)




Combining evidence

* |f we have multiple pieces of data/evidence (say
two pieces), then we need to compute or estimate

P(D1, D2 | H;)
which is often hard.

* Instead, we assume all pieces of evidence are
conditionally independent given a hypothesis:

P(Dl,DQ | HZ) — P(D1 \ Hr,:)P(DQ \ HZ)
* This assumption is most likely not true, but we do
it to make our lives easier.



P(

where

P(D;...,D

H;| Di,...,Dy,) =

Combining evidence (m pieces)

P(D+,...,D,, | H)P(H;)
P(D1,...,Dy,)

[P(Dl | H,)---P(D,), | Hi)} P(H;)

|IT, P(D; | Hy)| P(H)
B P(D+,...,D,,)

-y ({ﬁ |H,€} Hk))

k=1 1=1




Classification

* Classificationis the problem of identifying which of

a set categories (called classes) a particular item
belongs in.

* Lots of real-world problems are classification
problems:

— spam filtering (classes: spam/not-spam)

— handwriting recognition & OCR (classes: one for each
letter, number, or symbol)

— text classification, image classification, music
classification, etc.

 Almostany problem where you are assigning a
label to items can be set up as a classification task.



Classification

* An algorithm that does classification is called a
classifier. Classifiers take an item as input and output
the class it thinks that item belongs to. That is, the
classifier predicts a class for each item.

* Lots of classifiers are based on probabilities and
statistical inference:
— The classes become the hypotheses being tested.

— The item being classified is turned into a collection of data
called features. Useful features are attributes of the item
that are strongly correlated with certain classes.

— The classification algorithm is usually ML or MAP,
depending on what data we have available.



Example: Spam classification

New email arrives: is it spam or not spam?

A useful set of features might be the presenceor
absence of various words in the email:

— F1, ~F1: "Kirlin" appears/does not appear

— F2, ~F2: "viagra" appears/does not appear

— F3, ~F3: "cash" appears/does not appear

Let's say our new email contains "Kirlin" and
"cash," but not "viagra."

The features for this email are F1, ~“F2, and F3.
Let's use MAP for classification.



Example: Spam classification
* Features=Data=D =F1, ~F2, F3.

HMAY = argmax P(D | H;)P(H;)

HMAY = argmax  P(Fy,—~Fy, F3 | H;)P(H;)

i€{spam,not-spam }



Learning probabilities from data

 To use MAP, we need to calculate or estimate
P(Hi) and P(F1, ~F2, F3 | Hi) for each i.
* |n other words, we need to know:
— P(spam)
— P(not-spam)
— P(F1, ~F2, F3 | spam)
— P(F1, ~F2, F3 | not-spam)




Learning probabilities from data

* Let's assume we have access to a large
number of old emails that are correctly

labeled as spam/not-spam.
* How can we estimate P(spam)?

# of emails labeled as spam

P —
(spam) total # of emails



Learning probabilities from data

* Let's assume we have access to a large
number of old emails that are correctly

labeled as spam/not-spam.
* How can we estimate P(F1, ~“F2, F3 | spam)?

P(Fy,~Fy, F3 | spam) = # of spam emails with those exact features

total # of spam emails

 Why is this probably going to be a very rough
estimate?



Conditional independence to the rescue!

* |tis unlikely that our set of old emails contains
many messages with that exact set of features.

* Let's make an assumptionthat all of our features
are conditionallyindependent of each other,
given the hypothesis (spam/not-spam).

P(Fl, _IFQ,FS | spam) —
P(Fi | spam) - P(—F5 | spam) - P(F3 | spam)

 These probabilities are easier to get good
estimatesfor!

* A classifier that makes this assumptionis called a
Naive Bayes classifier.



Learning probabilities from data

* So now we need to estimate P(F1 | spam)

Insteac

of P(F1, ~F2, F3 | spam).

* Equiva

ently, how can we estimate the

probability of seeing "Kirlin" in an email given
that the email is spam?

P(F} | spam) =

# of spam emails with the word Kirlin

total # of spam emails



Example

Suppose | know that 80% of my email is spam. | have 3 features:
luxury, brands, and save. For each email, | will therefore have 3
pieces of data—the presence or absence of each one of these
features. | know P [luxury | spam| = 0.4 and P [brands| spam| = 0.3
and P [save| spam]| = 0.4 and P [luxury| not spam] = 0.01 and

[P [brands| not spam] = 0.2 and PP [save| not spam| = 0.1. Suppose
an email includes luxury and save but not brands . Should it be
classified as spam or not spam?



Another problem to handle...

 What if we see a word we've never encountered
before? What happensto its probability
estimate? (and why is this bad?)

# of spam emails with word F;

P(F; =
(Fj | spam) total # of spam emails

[HTﬂ P(F}; | spam) | P(spam)
P(spam | F1,...,F,) =

P(FL,.... Fp)

* Probability of zero destroys the entire calculation!



Another problem to handle...

e Fix the estimates:

# of spam emails with word F; + 1
total # of spam emails + 2

P(F} | spam) =

* Thisis called smoothing. Removes the possibility

of a zero probability wiping out the entire
calculation.

* Simulatesadding two additional spam emails, one
containing every word, and containing no words.

— We would also smooth for non-spam: adding two non-
spam emails, one with all words, one with no words.



Summary of Naive Bayes

 Assumes the data is a collection of features,
and each feature is conditionally independent
of all other features given the hypothesis.

* Classifies using MAP hypothesis.



Summary of Naive Bayes

* Hypotheses: Hq through H...

* Features(data): F; through F ..
HMAY — argmax P(D | H;)P(H;)

= argmax P(F,..., Fy, | H;)P(H;)

(/

— arggnax [P(Fl | H;)--- P(F,, Hz)} P(H;)
— arg];nax [ﬁP(Fj | Hz)}P(Hﬁ



Summary of Naive Bayes

* Probabilities needed to be determined (either
given to you or estimated from data):

* P(Hj) fori=1ton.
. P(Fjl H)forj=1tomandi=1ton.



Summary of Naive Bayes (for email)

* Naive Bayes classifies using MAP:
HMAP — argmax P(D | H;)P(H;)
— argrnax P(Fl,...,Fm | HZ)P(HZ)

i€{spam,not-spam}

= argmax [P(F1 | H;) - P(Fp | Hz)]P(HZ)
i€{spam,not-spam }

— argmax { P(Fj ’ Hz)} P(HZ)
i€{spam,not-spam } j=1
* Computethis for spam and for not-spam; see

which is bigger.



Summary of Naive Bayes (for email)

* Estimating the prior for each hypothesis:

P(H,) = +# of emails labeled as H;

total # of emails

e Estimating the probability of a feature given a
class (aka likelihood):

# of H; emails with word F; + 1
total # of H; emails + 2

P(F; | H;) =




