Functions

* Functions are groups of statements to which
you give a hame.
— Defining a function uses the "def" keyword.

* That group of statements can then be referred
to by that name later in the program.

— Calling a function uses the name of the function
then an opening/closing set of parentheses.

def print chorus(): . 5 0n0
print ("Supercali.” Function definitions

(etc)

def print um diddle():
print ("Um diddle diddlgf
(etc)

def print versel():
print ("Because
(etc)

was afraid to speak..")

"main" program. Function calls

A functio

def main() :
print chorus()
print_um diddle()
print versel ()
print chorus()
print um diddle ()
print_ verse2 ()
print chorus()

diddles

1st verse

chorus again

um diddles again

the 2" verse

the chorus the last time

main () the program

« When a function is called, Python
will
—"jump"” to the first line of the
function's definition,

—run all the lines of code inside the
definition, then

—"jump" back to the point where the
function was called.

* You are in charge of dessert for Thanksgiving
dinner. You decide to make two pumpkin pies
and an apple pie.

* Write a program that defines three functions:

— make apple() should print a description of how
to make an apple pie

— make_pumpkin() should print a description of
how to make a pumpkin pie

—main() should call make apple() and
make pumpkin() appropriately to make the pies.

* Don't forget to callmain() at the end of your
code!

* You want to write a program to sing (ok, print)
the song "Happy Birthday" to you and your
twin sibling.

* Here's how you might have done it before
your learned about functions.

Re-write this program to use functions.
Define a function called sing song that:

— Asks the user to type in a name from the keyboard.
— Sings the happy birthday song using that name.

Define amain () function that calls your
sing song() function twice.

It's OK that the program doesn't distinguish
between your name and your twin's name.

— That is, the program will use the same language to
prompt the user for both names.

 What if we want the program to work exactly
like the first program did, so it asks for my
name and then my twin's name using different
language?

def sing_song():
print("Happy bday to you, happy bday to you!")
print("Happy bday dear”, name, "happy bday to you")

def main():
name = input("What is your name? ")
sing song()
twin_name = input("What is your twin's name? ")
sing song()

main() This program doesn't

work!

def sing_song():
print("Happy bday to you, happy bday to you!")
print("Happy bday dear”, name, "happy bday to you")

def main():
name = input("What is your name? ")
sing song()
name = input("What is your twin's name? ")
sing song()

main() This program doesn't

work either!

Local variables

* Every variable assigned to inside a function is
"owned" by that function.

e These variables are invisible to all other
functions.

 These are called local variables because they
can only be used "locally" (within their own
function).

THIS PROGRAM DOESN'T WORK!

def sing song():
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

Attempting to
def main(): use name here

name = input("What is your name? ") “RUINEITH=ET
error.

* This is a problem.

 We'd like some way for functions to
communicate with each other.

e Specifically, we'd like a way for main to send
the value of the variable name to sing song
so sing song may use it.

* main() needs to send the variable name to
sing_song.

e Step 1: add name inside the parentheses in
sing song's definition.

— This tells sing_song that the value of this variable will
come from the function that calls sing_song.

BEFORE

def sing song():
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

AFTER

def sing song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

* main() needs to send the variable name to
sing_song.
e Step 1: add name inside the parentheses in
sing song's definition.
— This tells sing song that the value of this variable will
come from the function that calls sing_song.
* Step 2: every place that sing song is called, inside

the parentheses of the call, put whatever value you
want to send to sing song.

BEFORE

def main():
name = input("What is your name? ")
sing song()
name = input("What is your twin's name? ")
sing song()

AFTER

def main():
my_name
sing song(my_name)
twin_name = input("What is your twin's name? ")

input("What is your name? ")

sing song(twin_name)

Arguments and parameters

def name_of function(varl, va+r'2,)

statement
statement
statement

1
name_of function(valuel, value2, ..)

Calling:

Arguments and parameters

def name_of function(paraml, param2, ..):
statement
statement
statement

Calling:

name_of function(argl, arg2, ..)

def sing song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing song(my name)
twin_name = input("What is your twin's name? ")
sing song(twin_name)

main()

def sing song(name):
print("Happy bBday to you, happy bday to you!")

print("Happy bday dear", name, "happy bday to you")

def main():
my_name = input("What is your name? ")
sing song(my_ name)
twin_name = input("What is your twin's name? ")

sing song(twin_name)
When Python runs the red

main() line, it copies the value of

my name into sing song's
variable name.

def sing song(name):
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():
my_name = inpyt("What is your name? ")
sing song(my_nhame)
twin_name = ihput("What is your twin's name? ")

sing song(twin_name)
When Python runs the blue

main() line, it copies the value of

twin_name into
sing song's variable name.

def sing song() :
print("Happy bday to you, happy bday to you!")
print("Happy bday dear", name, "happy bday to you")

def main():

= input("What is your name? ")
sing song()

input("What is your twin's name? ")
sing song()
* You may use the same variable names in both places, if
main() desired.

e Each function then has its own copy of the variable.
* There is no permanent link between the variables.

def some function(x):
print(“Inside the function, x is”, X)
x = 17
print(“Inside the function, x is changed to”, Xx)

def main():
X = 2
print (“Before the function call, x is”, X)
some function(x)

print (“After the function call, x is”, X)

Output:
Before the function call, x is 2

main()

Inside the function, x 1s 2
Inside the function, x 1s 17
After the function call, x is 2

Wait. What?

* There is no permanent connection between the x
inmain and the x in some function.

 Arguments are passed --- one way only --- from
mainto some function whenmain calls
some function.

— This copies main's value of x into some function's
X.

* Any assignments to x inside of
some function do notcome backtomain.

 "That sounds like local variables."

* Yes, just as local variables are invisible outside of
the functions that own them, variables used as
parameters inside a function definition are local to
that function.

* So parameters in a function definition are really
local variables that have values automatically
copied into them when the function is called.

You've seen arguments already

 name = input("What is your name? ")
* X =5
oy=2

e print("x is", x, "y is", vy)

e print("their sum is", x + vy)

Arguments can be variables, literals, or math expressions.

You no longer have a twin. Now you have a sibling

that is two years older than you, but you still share
the same birthday.

Edit birthday4.py so sing_song now will print the
lyrics but also print how old the person is.

Add a second parameter to sing_song called age.

Edit main() to ask for your age, as well as your name
and sibling's name.

Edit the two calls to sing_song so appropriate ages
are passed as arguments.

