Abstraction and Functions
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Abstraction

"The essence of abstractions is preserving
information that is relevant in a given context,
and forgetting information that is irrelevant in
that context."

John V. Guttag,
Introduction to Computation and Programming Using Python
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Think of a task or problem where:

— you used to have to think about each step of the
problem

— but now it's automatic and you don't need to
think about each step anymore.






Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You’ll always sound precocious
Supercalifragilisticexpialidocious!

Um diddle diddle diddle um diddle ay
Um diddle diddle diddle um diddle ay!

Because | was afraid to speak
When | was just a lad

My father gave me nose a tweak
And told me | was bad

But then one day | learned a word
That saved me achin’ nose

The biggest word | ever heard
And this is how it goes: Oh!

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You’ll always sound precocious
Supercalifragilisticexpialidocious!

Um diddle diddle diddle um diddle ay
Um diddle diddle diddle um diddle ay!

He traveled all around the world
And everywhere he went

He’d use his word and all would say
“There goes a clever gent”

When Dukes and maharajas

Pass the time of day with me

| say me special word and then
They ask me out for tea

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You'll always sound precocious
Supercalifragilisticexpialidocious!
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Functions

* Programmers will use functions to give a
name to a section (block) of code.

* Any time you want to run that block, you can
use the name instead of retyping or copy-and-
pasting.



Functions

* To use a function, we must define it first.



Defining a function
Gives your function a name so it can be run later

« Syntax:

def name():
statement
statement
statement

# Notice how these

# lines are indented.

# This is how Python knows

# where a function definition
# begins and ends.

Pick a name for your function that describes what it does!

(Just like you pick variable names that describe what the
variable holds.)




Defining a function
Gives your function a name so it can be run later

« Syntax:

def print chorus():
print ("Supercalifragilisticexpialidocious!")
print ("Even though the sound of it")
print("Is something quite atrocious")
print("If you say it loud enough")
print("You’ll always sound precocious')
print ("Supercalifragilisticexpialidocious!")



Functions

* To use a function, we must define it first.

e After defining a function, to run the code
inside, you call the function.



Calling a function
Runs the code inside the function definition

« Syntax:

name( )

After defining a function, you can call it any number of times
you want.

Each time it is called Python acts as if you had typed in all of
the lines of the function definition.




* You are in charge of dessert for Thanksgiving
dinner. You decide to make two pumpkin pies
and an apple pie.

* Write a program that defines three functions:

—make _apple() should print a description of how
to make an apple pie

— make_pumpkin() should print a description of
how to make a pumpkin pie

— cook_dinner() should call make apple() and
make pumpkin() appropriately to make the pies.



The main() function

* Python programs usually include a main()
function that indicates the first function that

runs when the program begins.

— This function is in charge of calling any other
functions.

* This is not (technically) required in Python, but

is a good habit.
— Required in other languages like C++ and Java.

— Required for CS 141! ©



The main() function

* From this point on, always define a main()
function in your programs.

e Always call the main() function as the last line
of your program.



def print chorus():

print ("Supercali..")

(etc)

def print um diddle():

print ("Um diddle diddle..")

(etc)

def print versel():

print ("Because I was afraid to speak..")

(etc)

# A function for the

def main() :
print chorus ()
print um diddle()
print versel ()
print chorus ()
print um diddle()
print verse2 ()
print chorus ()

main ()

"main"

H H HH H H H

Print
Print
Print
Print
Print
Print
Print

Start

program.

the
the
the
the
the
the
the

the

chorus

um diddles

1st verse

chorus again

um diddles again

2nd yerse

chorus the last time

program



w N

00 J O U1 Wb

When a function is called, Python will

— "jump" to the first line of the function's definition,

— run all the lines of code inside the definition, then

— "jump" back to the point where the function was called.

def twinkle():
print ("Twinkle twinkle little star")
print("How I wonder what you are")

def main():
twinkle() # Call (run) the twinkle function.
print ("Up above the world so high")
print("Like a diamond in the sky")
twinkle () # Call the twinkle function again.

main () # Call main() to start the program.



