Abstraction and Functions

_— TR METIROPOLITAN ERRCPOLITAN
EFERENC i GOLDER'S i LE:renzc TRAMS] uj.c)?n: én'm«s.
BAMERLOO RY Shawn Thus GREEN I 70 FINCHLER, rowoopGresn, # 70 TOTTENHAM
S N\ UNETSTONE, ALERANDRS PALACE] - & EOMONTON.
CENTRAL LONDON RY .. = i (viw soeirmoare, ", g%
CITY & SOUTH LONBON RY, e] 2 PR
DISTRICT RAILWAY, e o N
GREAT NORTHERN & CITY RY = HIGHGATE ’FL:SR?(U |4
HAMPSTEAORY - % *
METROPOLITAN RY, “ . E
PICCADILLY RY S plpadsey | GILLESPIE
LONDON UNITED TRAMS, AR i : 4 = ROAD
OTHER TRAMWAYS, © s mmeedes P e i e /
SUBWAY CONNECTIONS, : - - ¥ DRAYTON PARK
OTHER RAILWAY'S. HOLLOWAY 7
ROAD

' INCHLEY R® &) ToWN \HIGHBURY
KINGSBURY 2 S™ HAMPSTEAD ~ {

NEASDEN A » s%lﬁm .
waR RO n, uxeRIDSE, ’ = SWiss : KENTISHTOWN |
2 ‘ . COTTAGE -

fgn'esau;w.:re CAMDEN \
MARLBORO' Jown 3
ROAD
MORNINGTON
CRESCENT.

STJOHN'S Wao D Re

sT 3
PANCRAS

TN GREAT CENTRAL
O%g, ~'SHp, EDGWARE
3 Og4 39 ROAD

EXH/BIW({N

- T0
W EALING.
gca?;mwumma(rm
-u»<-o¢-+++¢-++o¢++o*“
» 70 SHEPHERDS
PARL. k* BUSH

"-.-'“".“'T“ -

CHARING CROSS
HOUNSLOW, (ENR.:NRNENT)
HARRCW ETC i > AN i !
TURNHAM :)
REEN s . . oY : MINSTER

b
& NAVY B
UNITED TRARE. ARY STORES |
T HAETON wast [T
TWICKENHAN .
HOUNSLOW

NEWETD

RICKMANIWORTH

WATFORD JUNCTION

WATTOAD {Mim sTALIY)
CROXLEY OAREN
BUSHEY AND Qr (Y

MOOR PARK

& SANDY LODOL CARIENPERS PARK

MATCM IAD son PINNER
|
HEADSTONE LANE

MARAOW & WLALDSPONE
KENIOM

2

WOREH N

wintiey TIAR LY
WEMMNEY roe SUCOURY

 HILUNGOOK AUISUP

SOUTH EALING,

NOATHIILLDS
BOSTON MAMOR
OSTERLEY
HOUNSLOW [AST
MOUNSLOW CENTRAL
HOUNSLOW WEsT

GUNNELSRLIRY

LASTCOTL

b P SOUTH MARAOW HAZLESDIN

P SUDSURY HiLL

" LUDBURY TOWN

* ALPERTON

® PARK ROYAL

P HORTH LALING -

WEST tast |
ACTON AcTON!

r

e

BATIWA

Y
provil e NOT1ING
MiLs Gary

<

[ALING

it snurpeacs

| WOLLAND
PARK

oo

ACTON TOWN

ADDSOM
LOUTH ALION ROAD

e

CHISWICK
PARK STAMFCAD EANLS
A

)

Y 4
TUAKNNMAM NAVIN

Y
wEsr
GRLEN PARY FENSINGTON

LEW GARQINS

RICHMOND

REFERENCE
DISTRICT RAILWAY o METROPOUTAN ALY,
BAKERLOO LINE e METROPOLITAN ALY
PICCADILLY LINE s mnm-nuv‘v‘w’oﬁ
EDGWARE, HIMHBATE EAST LONDON AAILNAY s
& MORDEN LNE S INTERCHANGE stATIONS O
CENTRAL LONDON ALY s UNDER CONSTAUCTION 1888

STONEBRIDGE PARK

WILLESSEN JUNCTION
EENSAL GREEN
OUEENS PARK
KILSURN PARK

(DGwARE
MIRNT OAK (WATLING)
COLNDALE

HENSON CENTIAL
SRINT

WILLESDIN GREIN IR

KILBURN & BRONDESBURT

prLsaze
WEST HAMPSTEAD 7

MAMPITLAD
FINCHLEY ROAD C"‘:k‘"
SWISS COTTAGE

MAIDA VALE
WARWICK AVENUL

lA““N A IIW OO

BISHOM

20AD BAKL
PADDNsGTON STREET

LANCASTIR BOMD
GATL STRELT

onroal

MARSBLE
CIRCYS

CuULINS
ROAD ARCH

PIRCADILL

w COCKFOSTLRS
—
= ENFILLD WIST

e SOUTHGATE

= ARNOS GROVE

b BOUNDS GRITN
b WOOO GREIN

e TURNPIET LANE

P* MANOA MOUSE

FINSBURY PARK

S,

HOLLOWAY
ROAD

CALIDONIAN
3

KINGS CROSS
PANCE

DRAYTON PARK

HIGHBURY & ISLINGTON

CANONBURY & LSSEX ROAD
OLD STRELT
ANGIL

ALPERSGATL HOCAGATL

BLISS
b S5
£ Ly pOST LVEAPOOL STREIT

s
INOLBOAN LANE OFnicL X

M
AU OREDITCH

OVENT panson
SUBN o

ALDGATE STEMNLY
MONUMENT ST MAys B oatew

bl STabeT DOVIR STRLEY
INUNGTON NWYDL PARK CORNIA

oloucestin MASHTHRIN
ROAD

™
VICTORIA WEITMINGTIA,
ot

| wegr XU
SAOMPTON

s WALKAM GREEN

-‘I)’Tli Y BAIDGE

= EASTY PUINLEY
b SCUTHFIILDS

= WIMALEDOMN PARK

HC BICK

O wirsLeoon

BALMAM
TRINITY ROAD (TOOTING MS)
TOOTING BROADWAY
COLLIERS WOCO

A
STRAND / SLALEIRIARS C,‘;*‘NM
S reme
HARNG 5= .
n'!» $
WATERLOO

NG

TL L MILE
EAST ¢ND
SHADWLLL

WAPFING

ROTHIRMITHE
SURREY DOCKS

oot

KENNINGTON

OVAL
STOCRWIEL
CLAPHAM NOATH
CLAPMAM COMMON
CLAPHAM SOUTH

NEW CROSS -
GATE CROSS

D

SOUTH WIMBLIDON (MERTON)

HORDEN

Abstraction

"The essence of abstractions is preserving
information that is relevant in a given context,
and forgetting information that is irrelevant in
that context."

John V. Guttag,
Introduction to Computation and Programming Using Python

Abstraction

"The essence of abstractions is preserving
information that is relevant in a given context,
and forgetting information that is irrelevant in
that context."

John V. Guttag,
Introduction to Computation and Programming Using Python

Think of a task or problem where:

— you used to have to think about each step of the
problem

— but now it's automatic and you don't need to
think about each step anymore.

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You’ll always sound precocious
Supercalifragilisticexpialidocious!

Um diddle diddle diddle um diddle ay
Um diddle diddle diddle um diddle ay!

Because | was afraid to speak
When | was just a lad

My father gave me nose a tweak
And told me | was bad

But then one day | learned a word
That saved me achin’ nose

The biggest word | ever heard
And this is how it goes: Oh!

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You’ll always sound precocious
Supercalifragilisticexpialidocious!

Um diddle diddle diddle um diddle ay
Um diddle diddle diddle um diddle ay!

He traveled all around the world
And everywhere he went

He’d use his word and all would say
“There goes a clever gent”

When Dukes and maharajas

Pass the time of day with me

| say me special word and then
They ask me out for tea

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You'll always sound precocious
Supercalifragilisticexpialidocious!

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You’ll always sound precocious
Supercalifragilisticexpialidocious!

Um diddle diddle diddle um diddle ay
Um diddle diddle diddle um diddle ay!

Because | was afraid to speak
When | was just a lad

My father gave me nose a tweak
And told me | was bad

But then one day | learned a word
That saved me achin’ nose

The biggest word | ever heard
And this is how it goes: Oh!

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You’ll always sound precocious
Supercalifragilisticexpialidocious!

Um diddle diddle diddle um diddle ay
Um diddle diddle diddle um diddle ay!

He traveled all around the world
And everywhere he went

He’d use his word and all would say
“There goes a clever gent”

When Dukes and maharajas

Pass the time of day with me

| say me special word and then
They ask me out for tea

Supercalifragilisticexpialidocious!
Even though the sound of it

Is something quite atrocious

If you say it loud enough

You'll always sound precocious
Supercalifragilisticexpialidocious!

Functions

* Programmers will use functions to give a
name to a section (block) of code.

* Any time you want to run that block, you can
use the name instead of retyping or copy-and-
pasting.

Functions

* To use a function, we must define it first.

Defining a function
Gives your function a name so it can be run later

« Syntax:

def name():
statement
statement
statement

Notice how these

lines are indented.

This is how Python knows

where a function definition
begins and ends.

Pick a name for your function that describes what it does!

(Just like you pick variable names that describe what the
variable holds.)

Defining a function
Gives your function a name so it can be run later

« Syntax:

def print chorus():
print ("Supercalifragilisticexpialidocious!")
print ("Even though the sound of it")
print("Is something quite atrocious")
print("If you say it loud enough")
print("You’ll always sound precocious')
print ("Supercalifragilisticexpialidocious!")

Functions

* To use a function, we must define it first.

e After defining a function, to run the code
inside, you call the function.

Calling a function
Runs the code inside the function definition

« Syntax:

name()

After defining a function, you can call it any number of times
you want.

Each time it is called Python acts as if you had typed in all of
the lines of the function definition.

* You are in charge of dessert for Thanksgiving
dinner. You decide to make two pumpkin pies
and an apple pie.

* Write a program that defines three functions:

—make _apple() should print a description of how
to make an apple pie

— make_pumpkin() should print a description of
how to make a pumpkin pie

— cook_dinner() should call make apple() and
make pumpkin() appropriately to make the pies.

The main() function

* Python programs usually include a main()
function that indicates the first function that

runs when the program begins.

— This function is in charge of calling any other
functions.

* This is not (technically) required in Python, but

is a good habit.
— Required in other languages like C++ and Java.

— Required for CS 141! ©

The main() function

* From this point on, always define a main()
function in your programs.

e Always call the main() function as the last line
of your program.

def print chorus():

print ("Supercali..")

(etc)

def print um diddle():

print ("Um diddle diddle..")

(etc)

def print versel():

print ("Because I was afraid to speak..")

(etc)

A function for the

def main() :
print chorus ()
print um diddle()
print versel ()
print chorus ()
print um diddle()
print verse2 ()
print chorus ()

main ()

"main"

H H HH H H H

Print
Print
Print
Print
Print
Print
Print

Start

program.

the
the
the
the
the
the
the

the

chorus

um diddles

1st verse

chorus again

um diddles again

2nd yerse

chorus the last time

program

w N

00 J O U1 Wb

When a function is called, Python will

— "jump" to the first line of the function's definition,

— run all the lines of code inside the definition, then

— "jump" back to the point where the function was called.

def twinkle():
print ("Twinkle twinkle little star")
print("How I wonder what you are")

def main():
twinkle() # Call (run) the twinkle function.
print ("Up above the world so high")
print("Like a diamond in the sky")
twinkle () # Call the twinkle function again.

main () # Call main() to start the program.

