
Strings III

Warmup: Write a function called total_seconds
that takes one string argument. This argument will be
a string of the form "M:SS" where M is a number of
minutes (a single digit) and SS is a number of seconds
(2 digits). This function should calculate the total
number of seconds in this amount of time and return it
as an integer. (Don't need a for loop!)

Hint: use the int() function to convert
each component to an integer.

def total_seconds(time):

Challenge: Make your function work with strings with a
one- or two-digit minute component.

Review: Indexing/Slicing/Length

• If s is a string variable,
• s[p] returns character at index p.
• s[p:q] returns slice from characters p to q-1.
• len(s) returns the length of s (number of

characters)

• Slices don't need both left and right indices.
• Missing left index:
– Python assumes you meant 0 [far left of string]

• Missing right index:
– Python assumes you meant len(s) [far right of string]

s = "Computer"
print(s[1:]) # prints omputer
print(s[:5]) # prints Compu

print(s[-2:]) # prints er

Indices don't have to be literal numbers

Say we have this code:
name = input("type in your name: ")
x = int(len(name) / 2)
print(name[0:x])

What does this print?

Basic for loop

• To do "something" with every character in a
string s:

for pos in range(0, len(string)):
do something with string[pos]

Basic counting for loop

total = 0
for pos in range(0, len(string)):

if _______________:
total = total + 1

Put an "if" test
involving
string[pos] here.

Count the number of lowercase a's

total = 0
for pos in range(0, len(string)):

if string[pos] == "a":
total = total + 1

Count the number of any a's

total = 0
for pos in range(0, len(string)):

if string[pos]=="a" or string[pos]=="A":
total = total + 1

s in t True if s is a substring in t

s not in t False if s is a substring in t

s.isalpha() True if s contains only letters

s.isdigit() True if s contains only digits

s.islower() True if s contains only lowercase
letters

s.isupper() True if s contains only uppercase
letters

s.isspace() True if s contains only whitespace.

Count the letters

total = 0
for pos in range(0, len(string)):

if string[pos].isalpha()
total = total + 1

Count the uppercase letters

total = 0
for pos in range(0, len(string)):

if string[pos].isupper()
total = total + 1

Count the vowels

total = 0
for pos in range(0, len(s)):

if string[pos] in "aeiouAEIOU"
total = total + 1

String concatenation

• Have string variables s and t:
• s + t gives you a new string with all the

characters of s followed by all the characters
of t.

• s and t do not change!
– Just like if you say x = y + z, where all your

variables are integers, y and z don't change.

Pig Latin Translator:
1. Get piglatin_start.py and dickens.txt

from the class website (see "programs written in
class")

2. Write first_vowel. This function should take a
word and return the position/index of the first vowel
in that word. Test your function from the Python
shell.

3. Write piglatin. This function should translate a
word into pig latin. Test your function by calling
main().

4. Fill in the code for main2(). This function reads an
entire file and translates it into pig latin.

5. Challenge: Change your piglatin function so it
handles words that end with punctuation.

What does this code do?

answer = ""
for pos in range(0, len(s)):

answer = answer + s[pos]

s = "banana"
answer = ""
for pos in range(0, len(s)):
answer = answer + s[pos]

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

1st iteration
pos: 0
s[pos]: "b"
answer: "b"

pos

s[pos]

s = "banana"
answer = ""
for pos in range(0, len(s)):
answer = answer + s[pos]

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

2nd iteration
pos: 1
s[pos]: "a"
answer: "ba"

pos

s[pos]

s = "banana"
answer = ""
for pos in range(0, len(s)):
answer = answer + s[pos]

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

3rd iteration
pos: 2
s[pos]: "n"
answer: "ban"

pos

s[pos]

s = "banana"
answer = ""
for pos in range(0, len(s)):
answer = answer + s[pos]

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

4th iteration
pos: 3
s[pos]: "a"
answer: "bana"

pos

s[pos]

s = "banana"
answer = ""
for pos in range(0, len(s)):
answer = answer + s[pos]

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

5th iteration
pos: 4
s[pos]: "n"
answer: "banan"

pos

s[pos]

s = "banana"
answer = ""
for pos in range(0, len(s)):
answer = answer + s[pos]

0 1 2 3 4 5

"b" "a" "n" "a" "n" "a"

6th iteration
pos: 5
s[pos]: "a"
answer: "banana"

pos

s[pos]

What does this do?

answer = ""
for pos in range(0, len(s)):

if s[pos].isupper()
answer = answer + s[pos]

total = 0
for pos in range(0, len(s), 1):

if <test s[pos] for something>:
total = total + 1

answer = ""
for pos in range(0, len(s), 1):

if <test s[pos] for something>
answer = answer + s[pos]

COUNT

FILTER

def some_counting_function(s):
total = 0
for pos in range(0, len(s), 1):
if <test s[pos] for something>:
total = total + 1

return total

def some_filtering_function(s):
answer = ""
for pos in range(0, len(s), 1):
if <test s[pos] for something>:
answer = answer + s[pos]

return answer

COUNT

FILTER

