Functions

* Functions are groups of statements to which

you give a hame.
— "Defining" a function; uses the "def" keyword.

* That group of statements can then be referred
to by that name later in the program.

— "Calling" a function; uses the name of the function
then an opening/closing set of parentheses.

Functions: an example

These 3 lines define the rap function.

def rap():
print ("Now this is the story all about how")

print ("My life got flipped turned upside-down")

These 4 lines define the main function.
def main() :

rap () # This line calls rap().
print ()
rap () # This line calls rap() a 2" time.

main () # This line calls main() to start the program.

A different example

* You want to write a program to sing the
"Happy Birthday" song to the user.

* Here's a first attempt at doing this using
functions...

THIS PROGRAM DOESN’T WORK!

def sing song():
print (“Happy birthday to you! \

Happy birthday to you!”)
print (“Happy birthday dear”, name, \

“Happy birthday to you!"”)

def main():
name = input(“What is your name? ")

sing song()

main()

Local variables

* Every variable assigned to inside a function is
"owned" by that function.

* |tisinvisible to all other functions in your
program except its owner.

 These are called local variables because they
can only be used "locally" (within their own
function).

THIS PROGRAM DOESN'T WORK!

def sing song():
print (“Happy birthday to you! \

Happy birthday to you!”)
print (“Happy birthday dear”, name, \

“Happy birthday to you!

def main():
name = input(”“What 1s your name? ")

sing\song() Attempting to

use name here
main()

will cause an
error.

 We'd like some way for main to be able to
communicate with the sing song.

* Specifically, we'd like a way for main to "send"
the value of the variable name to
sing songso sing song may use it.

Passing information via arguments

Syntax for defining a function that takes arguments

def name of function(variablel, variable2, ..):
statement
Sstatement
statement

Syntax for calling a function that takes arguments

name of function(valuel, value2, ..)

Passing information via arguments

Imagine extra assignment statements in the function body:

def name of function(variablel, variable2, ..):

variablel = valuel # Python does this
variable2 = value?2 # behind the scenes.
statement

statement

more statements...

The values (valuel, value2, etc) come from where the
function is called.

def sing song(name, age):
print (“Happy birthday to you! \

Happy birthday to you!”)
print (“Happy birthday dear”, name, \

“Happy birthday to you!”)
print(“You are now”, age, “years old!"”)

def main():

sing song(“Brian”, 84)
sing song(“Meg”, 27)

main()

def sing song(name, age):
Lrt
irthgay to you!”)

irthday dear”, name, \

print (“Happy y to you! \

Happy
print (“Happy

“Happy
print(“You ar

irthday to you!”)
now”| age, “years old!"”)

def main():

sing song(“Brian”, 84)
sing song(“Meg”, 27)

main()

def sing song(name, age):
print (“Happy Mirth{lay to you! \
Happy

print (“Happy

“Happy
print(“You a

irthday to you!"”)
irthday dear”, name, \

irthday to you!”)
now/, age, “years old!")

def main():
sing song(“Bxian”,| 84)
sing song(“Meg”, 27)

main()

Output:

Happy birthday
Happy birthday
You are now 84
Happy birthday
Happy birthday

You are now 27

to you! Happy birthday to you!
dear Brian Happy birthday to you!
years old!

to you! Happy birthday to you!
dear Meg Happy birthday to you!

years old!

def sing song(name, age):
print (“Happy/ A to you! \
Happy

print (“Happy

“Happy
print(“You ar

to you!")
dear”, name, \

to you!")
ge, "“years old!")

def main():

username = input(“What
their age = irt(input(”

S your name? ")
at is your age? "))
sing song(username, their age)

main()

def sing song(name, age):
print (“Happy/ mirthdday to you! \
Happy [birthgay to you!”)
print (“Happy !birth¢ay dear”, name, \

“Happy!birthday to you!”)
print(“You afe now), age, "“years old!")

def main():

name = inputi(“What]l is your name? ")
age = int(input(“vhat is your age? *“))

sing song(name, age)

main()

def some function(x):
print(“Inside the function, x is”, X)
x = 17
print(“Inside the function, x is changed to”, Xx)

def main():
X = 2
print (“Before the function call, x is”, X)
some function(x)

print (“After the function call, x is”, X)

Output:
Before the function call, x is 2

main()

Inside the function, x 1s 2
Inside the function, x 1s 17
After the function call, x is 2

Wait. What?

* There is no permanent connection between the x
inmain and the x in some function.

 Arguments are passed --- one way only --- from
mainto some function whenmain calls
some function.

— This copies main's value of x into some function's
X.

* Any assignments to x inside of
some function do notcome backtomain.

 "That sounds like local variables."

* Yes, just as local variables are invisible outside
of the functions that own them, variables
used as arguments inside a function definition
are local to that function.

* So arguments in a function definition are
really local variables that happen to have

some hidden assighment statements at the
beginning.

def sing song(name, age):
print (“Happy birthday to you! \
Happy birthday to you!”)
print (“Happy birthday dear”, name, \

“Happy birthday to you!”)
print(“You are now”, age, *“years old!"”)

age_next year = age + 1

def main():
sing song(“Brian”, 84)
print (“Next year you will be”, age next year, \
“years old!"”)

« This program crashes because
main() age next year is a local

variable to sing song!
* Sing song can't send any
variables back to main.

Tricky example

def mystery(x, 2z, Vy):
print(z, y-x)

def main():

X =9
y = 2
z =5

mystery(z, y, X)
mystery(y, X, 2z)
mystery(x + z, ¥y - X, V)

main()

Write a program to compute the average of three
numbers typed in from the keyboard.

Your main() function should ask the user for the
numbers by using input().

Then write an average() function that takes three
arguments and prints the average of the
arguments.

If you finish early, expand your robot routine
program from Wednesday to include arguments.

— For instance, if you have a eat_meal function, you
could add an argument that tells what meal of the day
it is, so you could call eat_meal("breakfast") or
eat_meal("lunch").

