Function Review

e A function is a group of statements to which
we assign a name.

* We use the def keyword to a define a
function.

* When we want to execute the statements in
the function, we call the function by using its
name with parentheses after it.

def average(a, b, c¢):
avg = (a + b + ¢)/3

print (“The average of your \
numbers 1s”, avg)

def main():

X = input(“Give me a number: “)
y = 1nput(“Give me a number: *“)
z = input(“Give me a number: *)

average(x, v, 2z)

main()

def average(a, b, c): Tm§§§fmuﬁon
avg = (a + b + C)/3 definition.

print(“The average of your \
numbers 1s”, avg)

def main():

X = 1nput(“Give me a number: *)
y = input(“Give me a number: *)
z = 1nput(“Give me a number:)

average(x, v, 2z)

main() This is a function

call

def average(a, b, c¢):
avg = (a +'b c)/3

print (“The| average of your \
numbers| isl”, jlavg)

“GiLve/ me a number:)
ivel me a number:)

ivg me a number:)
average(x, v, 2)

When main calls average, Python copies the

values of x, y, and z (local variables in main)
into a, b, and c (local variables in average).

* Pretend we’re computing grades for a class
that has three homework assignments and
three tests. The final graded in the class is
weighted so that 75% of the final grade is
from the test average and 25% is from the
homework average.

 We'd like to write a program to use our
average function to take the averages of the
test and homework grades, and then weight
those averages appropriately to compute a
final course grade.

def average(a, b, c):
avg = (a + b + ¢)/3
print (“The average of your numbers is”, avg)

def main():
testl = input(“Give me the first test grade:)
test2 = input(“Give me the second test grade: *)

test3 = input(“Give me the third test grade: *)
average(testl, test2, test3)

hwl = input(“Give me the first HW grade: *)

hw2 = input(“Give me the second HW grade: *)
hw3 = input(“Give me the third HW grade: *)

average(hwl, hw2, hw3)

some code here to weight the test average by 0.75
and the quiz average by 0.25 and combine them.

main()

def average(a, b, c):
avg (a + b+ c)/3
print (“The average of yo

def main():

testl = input(“Give me t
test2 = input(“Give me t
test3 = input(“Give me t

average(testl, test2, tes

hwl = input(“Give me the
hw2 = input(“Give me the
hw3 = input(“Give me the

average(hwl, hw2, hw3)

main can't see the "avg"
variable inside of average

because avg is a local variable.

Furthermore, whenever we call
average, a new avg Vvariable is
created and the old one is lost.
Even if we could access avg

from main, there's no way we
could have both the homework
and test avg values at the same

some code here to weight the test average by 0.75
and the quiz average by 0.25 and combine them.

main()

def average(a, b, c):
avg = (a + b + ¢)/3

What we want to do is:

final_grade =0.75 * (avg from the first call to average) + 0.25 *

(avg from the 2" call)
inpu lve Ine e grade:

average(testl, test2, test3)

hwl = input(“Give me the first HW grade: *)
hw2 = input(“Give me the second HW grade: ")
hw3 = input(“Give me the third HW grade: *)
average(hwl, hw2, hw3)

some code here to weight the test average by 0.75
and the quiz average by 0.25 and combine them.

main()

Return values to the rescue!
def function(argl, arg2, ...):
statement
statement
[more statements if desired]
return value

value can be a literal, like a
number or a string, or it can

be a local variable from the
function.

Return values to the rescue!

When Python sees a line in a
function beginning with

def function(argl, arg2, ...)

statement "return," the function
immediately ends, and the
statement value is sent back to the caller.

[more statements if desired]

return value . .
value can be a literal, like a

number or a string, or it can

be a local variable from the
function.

Capturing the return value

* Use an assignment statement to "capture"” the
return value.

— Otherwise it disappears! [ALERRATCI T RTRIENLE
this, the function is called

. _ normally. However, when
variable = function(..) Fiiieie el

is "sent back" to the caller,
the value is put into the
variable you specify.

def average(a, b, c¢):
avg = (a + b + ¢)/3
return avg

Notice average now returns the

local variable avg, and the print
statement is removed.

def main():
testl = input(“Give me the first test grade: *)
test2 = input(“Give me the second test grade: *)
test3 = input(“Give me the third test grade: “)
test avg = average(testl, test2, test3)
print (“Your test average 1is”, test avg)
hwl = input(“Give me the first HW grade: *)
hw2 = input(“Give me the second HW grade: *)
hw3 = input(“Give me the third HW grade: *)

hw avg = average(hwl, hw2, hw3)
print (“Your homework average is”, hw avg)

final grade = 0.75 * test avg + 0.25 * hw avg
print (“Your final grade is”, final grade)

main()

def average(a, b, c): -
verage(a, b, c) main calls average: values test1,

test2, and test3 are copied into a,
b, and c.

avg = (a +
return avg

def main():

testl = input(“Glhve me\the W.rst test grade: *)
d test grade: “)

st grade: “)

test2 = input(“Giv® me tW\e sec
test3 = input(“Give
test avg = average(testl, test2, test3)

print (“Your test average 1is”, test avg)

hwl = input(“Give me the first HW grade: *)
hw2 = input(“Give me the second HW grade: *)
hw3 = input(“Give me the third HW grade: *)

hw avg = average(hwl, hw2, hw3)
print (“Your homework average is”, hw avg)

final grade = 0.75 * test avg + 0.25 * hw avg
print(“Your final grade is”, final grade)

main()

def average(a, b, c¢):
avg = (a + b + ¢)/3
return avg

def main(

average returns a copy of its local

variable avg back to main, and the
value is assigned to test avg.

testl input(“Give me the first test grade: *)
test2 input(“Give me the second test grade: *)
tes = input(“Give me the third test grade:)

test _avg = average(testl,
print (“Your test average
hwl = input(“Give me the
hw2 = input(“Give me the
hw3 = input(“Give me the

test2, test3)
is”, test avg)
first HW grade: *)
second HW grade:)
third HW grade: *)

hw avg = average(hwl, hw2, hw3)
print (“Your homework average is”, hw avg)

final grade = 0.75 * test avg + 0.25 * hw avg
print (“Your final grade is”, final grade)

main()

f average(a, b, c¢): :
def average(a, b, c) main calls average: values hwl,

hw2, and hw3 are copied into a, b,
and c.

avg = (a +
return avg

def main():

testl = input e the first test grade: *)
test2 = input(“Giwe mé& the second test grade: *)
Giv@ me \the third test grade: ")
test2, test3)

1s”, test avg)

test3 = input(
test avg = ave
print (“Your tes
hwl = input(“Givg me irst HW grade: *“)
hw2 = input(“Give\ me ond HW grade: “)
thiyd HW grade:)

hw avg = average(hwl, hw2, hw3)
print (“Your homework average is”, hw avg)

hw3 = input(“Give

final grade = 0.75 * test avg + 0.25 * hw avg
print(“Your final grade is”, final grade)

main()

def average(a, b, c¢):
avg = (a + b + ¢)/3
return avg

average returns a copy of its local

variable avg back to main, and the
value is assigned to hw _avg.

input (“Give me the first test grade: “)
input (“Give me the second test grade: “)

test3 input(“Give me the third test grade: ")
test gvg = average(testl, test2, test3)
printf “Your test average 1is”, test avg)

input(“Give me the first HW grade: “)
input(“Give me the second HW grade: “)
hw3yF input(“Give me the third HW grade: *)

hw avg = average(hwl, hw2, hw3)
print (“Your homework average is”, hw avg)

final grade = 0.75 * test avg + 0.25 * hw avg
print (“Your final grade is”, final grade)

main()

 When writing functions, you should test them

to make sure they work in all kinds of
situations.

— Does average() work with negative numbers?
Floating point numbers?

* You can write a program to do testing, by
calling the function with varying arguments.

* Or, you can test your function using the

Python Shell (the window where every line
starts with >>>)

