Final project: Due Saturday, 11:55pm.

Final exam: Monday, April 29, 5:30pm.

Location: FJ-B

- In pairs, use the index cards to devise a sorting algorithm: an algorithm that takes a list of mixed-up numbers and puts them in sorted order, from lowest to highest.
- In groups of 4, discuss what each pair came up with. Are your ideas similar or different?
- As a group of 4, write down your algorithm on paper.
 - Your algorithm can re-arrange the elements of the mixed-up list, or copy them into a new list.
- In pairs, write your algorithm in Python.

Insertion Sort

For every item in L (except first), from left to right:

- find new position for item between 0 and item's old position
- slide all items from 0 to newpos-1 to the right one slot
- put item into its new position

8 7 5 6 3

Item = 7

7 8 5 6 3

Item = 5

5 7 8 6 3

Item = 6

5 6 7 8 3

Item = 3

3 5 6 7 8

Insertion Sort

```
for oldpos in range(0, len(L)):
  item = L[oldpos]
  newpos = 0
  while L[newpos] > L[oldpos]
    newpos = newpos + 1
  slide_right(L, newpos, oldpos - 1)
  L[newpos] = item
```

Selection Sort

```
run loop from pos=0 to pos=len(L)-2
  find smallest item in L[pos : len(L)], let that
    position be called small_position
  swap L[pos], L[small_position]
```

8 7 5 6 3

Smallest = 3

3 7 5 6 8

Smallest = 5

3 5 7 6 8

Smallest = 6

3 5 6 7 8

Smallest = 7

3 5 6 7 8

Selection Sort

```
for pos in range(0, len(L) - 1):
    smallest_pos = pos
    for test_pos in range(pos, len(L)):
        if L[test_pos] < L[smallest_pos]:
            smallest_pos = test_pos
        swap L[pos], L[smallest_pos]</pre>
```

Bubble Sort

Loop:

```
loop over positions in L from 0 to len(L) - 2:
   if L[pos] > L[pos + 1], then swap them
do outer loop again if any swaps were made
```

8 7 5 6 3

7 8 5 6 3

7 5 8 6 3

7 5 6 8 3

7 5 6 3 8

7 5 6 3 8

5 7 6 3 8

5 6 7 3 8

5 6 3 7 8

5 6 3 7 8

5 6 3 7 8

5 6 3 7 8

5 3 6 7 8

5 3 6 7 8

5 3 6 7 8

5 3 6 7 8

3 5 6 7 8

3 5 6 7 8

3 5 6 7 8

3 5 6 7 8