String Concatenation

* Combines two strings into a new, longer string.
* Uses the same plus sign as addition.
sl = "CS141"
s2 = "rocks!"”
bigstring = sl + s2
print (bigstring)
prints CSl41lrocks!

String Concatenation

e Unlike print(), string concatenation does not put
spaces between your strings.

sl "CS141"
s2 = "rocks!"”
bigstring = s1 + " " + s2

print (bigstring)
prints CS141 rocks!

Sample problem

* All professor email addresses at Rhodes are
constructed from the professor's last name,
followed by the initial letter of their first
name.

 We want to design a function that takes a
prof's first and last name and returns their
email address.

def make prof email(first, last):
init = first[O0]
address = last + init + "@rhodes.edu"

return address

def main():
firstname = input("First name: ")

lastname = input("Last name: ")
addr = make prof email (firstname, lastname)

print ("Email:", addr)

You try it

* Modify this program so it creates a student
email address, not a professor's email.

* You'll need to change the code so it uses first
name, last name, middle name, and class year.

 Your new function should take FOUR
arguments.

String concatenation in loops

e Basic string for loop can be used with string
concatenation, too.

* Use this idea when we need to examine every
character of a string and construct a new
string based on certain characters.

def count any a(str):
counter = 0
for pos in range (0, len(str)):
if str[pos] == "a" or str[pos]
counter = counter + 1

return counter

def filter any a(str):

answer =
for pos in range(0, len(str)):

if str[pos] == "a" or str[pos]
answer = answer + str[pos]

return answer

"A"

"A"

str = "BANana"
for pos in range(0, len(str)):
if str[pos] == "a" or str[pos] == "A":
answer = answer + str[pos]

1st iteration
pos: 0
s[pos]: "B"

dNSwer.

str = "BANana"
for pos in range(0, len(str)):

if str[pos] == "a" or str[pos] == "A":
answer = answer + str[pos]

pos ¢ 2"d jteration

0 1 2 3 4 5 pos: 1
"B |"A" |"N" |"a" |"n" |"a"

s[pos]: "A"

answer: "A"
qposr'

str = "BANana"
for pos in range(0, len(str)):

if str[pos] == "a" or str[pos] == "A":
answer = answer + str[pos]

pos ¢ 3rd jteration

0 1 2 3 4 5 pos: 2
"B |"A" |"N" |"a" |"n" |"a"

s[pos]: "N"

answer: "A"
s[posqrb

str = "BANana"
for pos in range(0, len(str)):

if str[pos] == "a" or str[pos] == "A":
answer = answer + str[pos]

pos ¢ 4t jteration
0 1 2 3 4 5 pos: 3
"B" ["A" |"N" | "a" |"n" |"a"

s[pos‘]Tb

s[pos]: "a"
answer: "Aa"

str = "BANana"
for pos in range(0, len(str)):

if str[pos] == "a" or str[pos] == "A":
answer = answer + str[pos]

pos ¢ 5th jteration

0 1 2 3 4 5 pos: 4
"B |"A" |"N" |"a" |"n" |"a"

s[pos]: "n"

answer: "Aa"
s[pos‘]Tb

str = "BANana"
for pos in range(0, len(str)):

if str[pos] == "a" or str[pos] == "A":
answer = answer + str[pos]

pos ¢ 6th jteration

0 1 2 3 4 5 pos: 5
"B |"A" ["N" |"a" |"n" |"a"

s[pos]: "a"

answer: "Aaa"
s[posl]rb

You try it

* Write a function called reverse that takes a string
argument. It returns the string argument with all
the characters in reverse order.

— Example: reverse("abc") returns "cba"

* Write a function called every other that takes a
string argument. It returns a new string built
from skipping every other character in the
argument.

— Example: every other("abcdef") returns "ace"

def reverse(s):
answer = ""
for pos in range(len(s)-1, -1, -1):
answer = answer + s|[pos]
counter = counter + 1

return counter

def every other(s):
answer = ""
for pos in range(0, len(s), 2):
answer = answer + s|[pos]

return answer

Helpful string functions

 Handout has lots of useful string functions.
* Will be given to you on the test.

* Write a function called count_digits that counts the
number of digits in a string.

— Ex: count_digits("43abc8") returns 3.
— Hint: use isdigit() from the handout.

 Write a function digit_sum that returns the total sum
of the digits in a string.
— Ex: digit_sum("43abc8") returns 15.

* Write a function total _time that takes a string
argument with two numbers separated by a colon.
The two numbers represent minutes and seconds. The
function should return the total number of seconds in

the time given. The two numbers may be any number
of digits. Hint: use the find function to find the colon.

— Ex: total _time("1:40") returns 100
— Ex: total _time("10:40") returns 640
— Ex: total_time("123:456") returns 7836

