Strings Il

Warmup: Write a function called total _seconds
that takes one string argument. This argument
will be a string of the form "M:SS" where M is a
number of minutes (a single digit) and SS is a
number of seconds (2 digits). This function

S
t

(

nould calculate the total number of seconds in
nis amount of time and return it as an integer.

Don't need a for loop!)
Hint: use the int() function to convert
each component to an integer.

def total seconds(time):

Review: Indexing/Slicing/Length

If s is a string variable,
s[p] returns character at index p.

s[p:qg] returnsslice from characters p to g-1.

len(s) returns the length of s (number of
characters)

e Slices don't need both left and right indices.
* Missing left index:
— Python assumes you meant O [far left of string]
* Missing right index:
— Python assumes you meant 1len(s) [far right of string]

s = "Computer"

print(s[1l:]) # prints omputer
print(s[:5]) # prints Compu
print(s[-2:]) # prints er

Indices don't have to be literal numbers

Say we have this code:

name = input("type in your name: ")
x = int(len(name) / 2)

print (name[0:x])

What does this print?

Basic for loop

* To do "something" with every character in a
string s:

for pos in range(0, len(s)):
do something with s[pos]

Basic counting for loop

total = ©
for pos in range(©, len(s), 1):

if : Put an "if" test
total = total + 1 involving s[pos]
here.

Count the number of lowercase a's

total = ©
for pos in range(@ len(s), 1):

if s[pos] ==
total = total + 1

Count the number of any a's

total = ©
for pos in range(©, len(s), 1):

if s[pos] "a" or s[pos] == "A":
total = total + 1

s in t

s not in t
s.isalpha()
s.isdigit()

s.islower()

s.isupper()

s.isspace()

True if s is a substring in t
False if s is a substring in t

True if s contains only letters

True if s contains only digits

True if s contains only lowercase
letters

True if s contains only uppercase
letters

True if s contains only whitespace.

Count the letters

total = ©
for pos in range(0, len(s), 1):
if s[pos].isalpha()
total = total + 1

Count the uppercase letters

total = ©
for pos in range(0, len(s), 1):
if s[pos].isupper()
total = total + 1

Count the vowels

total = ©
for pos in range(0, len(s), 1):
if s[pos] in "aeiouAEIOU"
total = total + 1

String concatenation

* Have string variables s and t:

* s+t gives you a new string with all the
characters of s followed by all the characters

of t.

 sand t are not changed!
— Just like if you say x =y + z, y and z don't change.

What does this code do?

answer =
for pos in range(0, len(s)):
answer = answer + s[pos]

s = "banana"
answer = "
for pos in range(0, len(s)):

answer = answer + s[pos]

po * 1st iteration
1 pos: 0

> 2 3 4 5
o e o [o il slpos): '

answer: "b"
s[posT

s = "banana"
answer = "
for pos in range(0, len(s)):

answer = answer + s[pos]

po ¢ 2" jteration
pos: 1

6 1 2 3 4 5
"' ['a" [vt o va R slpos: "o

answer: "ba"
s[posw

s = "banana"
answer = "
for pos in range(0, len(s)):

answer = answer + s[pos]

po 3rd jteration
T POS: 2

0
mmmmmm slposl: “n

answer: "ban"
s[posT

s = "banana"
answer = "
for pos in range(0, len(s)):

answer = answer + s[pos]

po ¢ 4" jteration
S
2 pOS: 3

mmmmmm slposl: "a

answer: "bana"
s[pos¢

s = "banana"
answer = "
for pos in range(0, len(s)):

answer = answer + s[pos]

po 5th jteration
3 5 pos: 4

2
mmmmmm slposl: “n

answer: "banan"
s[posT

s = "banana"
answer = "
for pos in range(0, len(s)):

answer = answer + s[pos]

po ¢ 6th iteration
3 4 pOS: 5

mmmmmm slposl: "a

answer: "banana"
s[posT

What does this do?

answer =

for pos in range(0, len(s)):
if s[pos].isupper()

answer = answer + s[pos]

total = © COUNT

for pos in range(©, len(s), 1):
if <test s[pos] for something>:
total = total + 1

answer = "" FILTER

for pos in range(©, len(s), 1):
if <test s[pos] for something>

answer = answer + s[pos]

def some_counting function(s):
total = ©
for pos in range(0, len(s), 1):

if <test s[pos] for something>:

total = total + 1
return total

def some_filtering function(s):

answer =
for pos in range(0, len(s), 1):

if <test s[pos] for something>:

answer = answer + s[pos]
return answer

* Write a function called count_digits that
returns the number of digits in a string.

— count_digits("abc123def5") returns 4

* Write a function called filter_digits that
returns only the digits from a string.
— filter _digits("abc123def5") returns "1235"

* Write a function called sum_digits that returns
the sum of all the digits in a string.
— sum_digits("abc123def5") returns 30

* Write a function called count_dups that
counts the number of back-to-back duplicated
characters in a string.

— count_dups("balloon") returns 2.

* Write a function called count_unique that
counts the number of unique characters in a
string.

— count_unique("abracadabra") returns 5.

* Write a function called reverse that RETURNS

(not prints) the reverse of string s.

— reverse("abc") returns "cba"

