
Data	Types	
• Every	piece	of	information	a	Python	program	stores	or	manipulates	has	a	“data	type”	that	tells	

Python	what	kind	of	information	it	is.	
• Python	cares	about	the	data	type	of	information	in	a	program	because	every	data	type	is	stored	in	

a	different	way	inside	the	computer.	
• Common	data	types:		

o Integer	(whole	number)	
o Floating	point	(number	with	a	decimal	point)	
o String	(sequence	of	letters,	numbers,	spaces,	and/or	other	characters)	

	
Literals	

• A	literal	in	a	Python	programs	refers	to	a	piece	of	information	you	“literally”	put	into	the	source	
code	of	the	program.	

• Any	number	(integer	or	floating	point)	that	you	put	directly	into	the	code	of	a	program	is	a	literal.	
• Any	string	(sequence	of	characters	surrounded	by	double	or	single	quotes)	that	you	put	directly	

into	your	code	is	a	string	literal.	
• Ex:	print(6)		 	 	 # 6 is a literal	
• Ex:	print(“I love CS 141!”) # “I love CS 141!” is a string literal
• Ex:	print(Hello world) # This is a syntax error; string literals must be		

															 	 	 	 # enclosed by quotes	
Variables	

• A	variable	is	a	name	associated	with	a	value	in	a	program.	
• You	can	use	a	variable	in	your	program	any	place	you	would	use	a	literal.	
• When	you	use	a	variable	(e.g.,	in	a	print	statement),	Python	substitutes	the	current	value	of	the	

variable	in	place	of	the	name.	
o Current	value	is	important	because	variable	values	may	change	throughout	a	program.	

• Variables	obtain	their	values	through	assignment	statements.	
o name_of_variable = value_you_want_to_put_in_the_variable
o After	the	line	above,	from	that	point	forward	in	the	program,	the	variable	name	on	the	left	

of	the	equals	sign	will	have	the	value	from	the	right	side	of	the	equals	sign.	
o When	an	assignment	statement	is	encountered,	any	old	value	of	the	variable	is	lost.	
o Left	side	of	the	equals	sign	must	be	a	single	variable.	
o Right	side	can	be	a	literal,	another	variable,	or	an	expression	that	evaluates	to	a	value.		Even	

if	the	right	side	has	variables,	they	don’t	change	as	the	result	of	an	assignment	statement.		
Only	the	left	side	changes.	

• Ex:		
o x = 6 # assigns 6 to the variable x
o y = 7 # assigns 7 to the variable y
o print(x, y) # prints 6 7
o x = -2.1 # reassigns x a new value; 6 is lost
o y = x # reassigns y the value of -2.1 as well
o x = “A string” # reassigns x a new value; y is still -2.1
o print(x, y) # prints A string -2.1
o z = y + 2.1 # new variable z gets the value 0
o z = z + 1 # this is legal! Right side is evaluated first,

then z gets that new value.
o print(z) # prints 1	

	
• Assignment	statements	do	not	cause	a	variable’s	value	to	be	printed.		If	you	want	to	see	the	value	

of	a	variable,	you	must	use	a	print	statement	to	display	it.	

Input	Statements	
	

• An	input	statement	is	used	to	get	input	from	the	keyboard;	that	is,	it	is	used	to	have	the	user	type	
in	a	number	or	a	string	and	store	what	the	user	types	in	a	variable.	

• There	are	three	types	of	input	statements,	each	one	corresponding	to	a	data	type.	
• All	three	are	variations	of	a	variable	assignment	statement.	
• When	Python	encounters	an	input	statement,	the	program	pauses,	displays	the	prompt	string,	and	

waits	for	the	user	to	type	something	and	press	enter.	
• Whatever	the	user	types	is	stored	in	the	variable	on	the	left	side	of	the	equals	sign.	

	
• For	integers:	

o variable = int(input(“Prompt”))

• For	floats:	
o variable = float(input(“Prompt”))

• For	strings:	

o variable = input(“Prompt”)

• The	“Prompt”	part	in	the	examples	above	is	the	prompt	string.		It	is	what	is	displayed	to	the	user	
while	the	program	is	paused	waiting	for	the	user	to	type	something,	and	is	therefore	usually	some	
sort	of	message	telling	the	user	what	to	type.		The	string	itself	can	be	anything	you	want,	and	has	
no	effect	on	what	information	goes	into	the	variable.			
	

	

