
While	loop	syntax,	pseudocode	and	how	to	write	any	while	loop	
	
while condition:
 statement # These indented statements form the body of the loop.
 statement
 [more statements ...]
statement # This statement is the first one run after the loop ends.
statement
[more statements ...]

A	while	loop	runs	a	block	of	code	as	long	as	a	condition	is	true.		The	first	time	the	while	statement	is	encountered,	
the	condition	is	tested,	and	if	it	is	true,	all	the	statements	in	the	body	of	the	loop	are	run.		Then	the	condition	is	
tested	again.		If	it	is	still	true,	then	the	body	of	the	loop	is	run	again.	The	condition	is	tested	again,	and	this	process	
continues---test	condition,	then	run	the	body---over	and	over,	until	the	condition	becomes	false,	when	the	loop	
ends.		At	this	point	Python	picks	up	with	the	next	statement	after	the	body	of	the	loop.	
	
Pseudocode	is	an	informal	description	of	an	algorithm,	written	for	a	human,	not	a	computer.		It	resembles	
computer	code	in	its	basic	structure,	in	that	usually	retains	structures	like	functions,	if-else	statements,	and	loops,	
but	it	may	leave	out	technical	details	specific	to	a	certain	programming	language.		The	goal	of	writing	an	algorithm	
in	pseudocode	is	to	allow	a	human	to	(1)	read	and	understand	the	code	and	(2)	easily	translate	the	algorithm	into	
any	programming	language.	
	
For	instance,	in	pseudocode,	you	can	say:	
	
x = get integer from keyboard
	
or	
	
if x is between 0 and 100, then
 print x with two decimal places
	
whereas	those	are	not	true	statements	in	Python.		Pseudocode	is	not	concerned	with	syntax,	but	with	the	
semantics	of	the	algorithm.			
	
How	to	write	a	while	loop		
	

1. Write	pseudocode	for	what	the	loop	does	by	explicitly	repeating	lines	of	pseudocode	until	you’ve	repeated	
the	same	code	at	least	twice.			

2. Include	an	“if”	statement	in	your	code	that	will	be	True	if	you	want	the	loop	to	keep	going,	and	False	if	you	
want	the	loop	to	stop.	

3. Make	sure	the	pseudocode	repeats	the	“if”	statement	at	least	twice.	
4. Find	the	statements	between	consecutive	“if”	statements.		These	statements	will	become	the	body	of	the	

loop.	
5. The	“if”	test	will	become	the	“while”	test.	
6. If	there	is	any	pseudocode	before	the	first	“if”	test,	if	will	go	immediately	before	the	start	of	the	while	loop	

(outside	of	the	body).	
	
Using	this	idea	will	sometimes	result	in	the	same	line(s)	of	code	being	placed	both	inside	the	loop	and	before	the	
loop.		This	is	not	a	mistake;	sometimes	this	happens	and	is	considered	OK	style.		This	is	sometimes	called	“a	loop	
and	a	half”	because	you	have	the	entire	loop	plus	some	fraction	of	the	statements	inside	the	body	of	the	loop	
repeated	before	it	starts.	
	 	

While	Loop	Day	2	Practice	
	
Use	the	general	loop-writing	procedure	from	the	previous	page	to	write	the	following	loops.	
	

1. Write	a	program	that	asks	the	user	to	type	in	two	names,	over	and	over	again.		The	program	will	print	out	
which	one	is	first	alphabetically.		Then	the	user	will	be	asked	if	they	would	like	to	continue,	and	if	they	type	
yes,	the	program	asks	for	another	pair	of	names.		This	continues	until	the	user	types	that	they	don’t	want	to	
continue.	
	

a. Change	the	program	so	the	loop	automatically	stops	when	the	user	types	the	word	STOP	for	the	
first	name.		In	other	words,	the	user	will	no	longer	need	to	be	explicitly	asked	if	they	want	to	
continue.	
	

b. Change	the	program	so	the	loop	automatically	stops	when	the	user	types	the	word	STOP	for	either	
of	the	two	names.	
	

c. Change	the	program	so	the	loop	automatically	stops	when	the	user	types	the	word	STOP	for	the	
first	name,	and	when	this	happens,	the	user	isn’t	even	prompted	for	the	second	name	(loop	ends	
immediately	after	the	first	name	being	STOP).	
	

2. Write	a	program	so	the	user	may	enter	integers	from	the	keyboard	over	and	over,	in	a	loop.		Stop	when	
looping	when	they	type	in	a	number	between	1	and	10.	
	

a. Change	the	program	so	the	number	between	1	and	10	that	ends	the	loop	isn’t	printed.		(If	your	first	
program	didn’t	print	the	number,	then	make	it	be	printed	instead).	
	

b. Change	the	program	so	the	loop	ends	when	the	number	is	even.	
	

3. Write	a	program	that	asks	the	user	to	type	in	two	integers,	over	and	over	again.		Print	the	sum	of	the	two	
integers.		Make	the	loop	stop	when	the	second	integer	is	less	than	zero	(and	don’t	print	the	sum	in	this	
case).	
	

a. Change	the	loop	so	the	sum	is	printed	when	the	second	integer	is	less	than	zero.			
	

b. Make	the	loop	stop	when	the	sum	of	the	two	integers	is	odd.		(try	it	both	with	printing	the	sum	and	
not	printing).	
	

c. Make	the	loop	stop	when	the	first	integer	is	less	than	zero	(and	then	don’t	ask	for	the	second	one).	

