C++ Vectors

Vectors are the C++ data type that most closely aligns with Python’s list data type. Vectors are arrays that
can be dynamically resized as a program runs; they can grow and shrink as necessary. Like C++ arrays,
however, they do not use bounds checking by default. That is, if you make a vector of ten values and try
to access vector[20], there’s no guarantee what will happen.

You should use C++ arrays for constant arrays that are defined directly in your code, or for arrays whose
size can be determined at compile-time. Use vectors otherwise.

C++ arrays C++ vectors Python lists

Can be resized No Yes Yes

Bounds-checking No No (optional) | Yes

Must know size at compile-time | Yes No No

Can be re-assigned all at once No Yes Yes

Can be passed to functions Yes Yes Yes

Can be returned from functions | Yes, but not straightforward | Yes Yes

Literals available Only for initialization, e.g., No Yes (e.g., [1, 2, 3])
int array[3] = {1, 2, 3};

Vector operations (type stands for a data type, like int or float):

Create an empty vector vector<type> v;

Create a vector of a certain size vector<type> v(int size);

Create a vector of a certain size, filled with a certain | vector<type> v(int size, type item);
item

Insert an item at the end .push_back(type item);

Access or change an item Use brackets just like Python lists or C++ arrays

wherever you’d use a regular variable or literal
Usev.at(int position) instead of brackets (i.e., with cin, cout, assignment, passing
if you want bounds-checking. arguments, returning values, etc). No Python-like

slicing operations or negative indices.

Re-assign entire vector v = Vv2; (resizes v to have the same length as v2,
then copies all of v2’s items into v).

Return first item in vector v.front()

Return last item in vector v.back()

Resize a vector v.resize(int newsize);

Resize a vector and fill with an item v.resize(int newsize, type item);

Return a vector’s current size v.size()

Test whether a vector is empty v.empty()
Vv
v

Insert an item at position n in the vector, shifting .insert(v.begin() + n, type item);

items in positionsntov.size() - 1 to the right.

Insert an item at a position calculated from theend | v.insert(v.end() - n, type item);
of the vector.

Remove an item at the end (decreases size by 1) v.pop_back();
Remove an item from position n, shifting items in v.erase(v.begin() + n); [canusev.end()
positionsn + 1tov.size() - 1 to the left. as well to erase from end |

Clear the vector (remove all items and resize to 0) | v.clear();

