Dynamic Memory

Review: automatic variables

Automatic variable: memory is allocated

(reserved) and deallocated (freed up)
automatically.

Always stored on the stack.
"Normal" way to make a variable

Up until last Friday, all variables in our
programs were automatic.

NSA Spying

* Suppose we work for the NSA and we are
creating a program to manage our spying
database.

 We want to write a function that loads the spy
database into our program.

database load database() {
database db;
// load all the records of everyone
// on earth into db
return db;

int main() {
database db = load database();
// launch drones at whomever we want..

database* load database() {
database db;
// load all the records of everyone
// on earth into db
return &db;

int main() {

database * db = load database();
// launch drones at whomever we want..

Dynamic memory allocation

* We need a way to declare a variable so that it
will not be deallocated when it goes out of
scope.

* Dynamic memory allocation to the rescue!

Dynamic memory allocation

e type * ptr = new type;
— allocate memory on the heap for one new
variable of type type and return a pointer to it.

 delete ptr;
— deallocate the memory pointed to by ptr
— good idea to then set ptrtonullptr

* You must deallocate all your memory when
you are done with it!

database* load database() {
database * db = new database;
// load all the records of everyone
// on earth into db
return db;

int main() {

database * db = load database();
// launch drones at whomever we want..
delete db;

Dynamic memory gotchas

* The pointer to the dynamic memory is still an
automatic variable, so it must be passed and
returned from functions like normal.

* You can copy that pointer as much as you
want, but you must delete it exactly once
(no matter how many copies there are floating
around).

Dynamic memory gotchas

e After memory is deleted, it may be allocated
for something else, so any existing pointers to
that memory should be considered invalid.

* Deleting the same memory twice is bad.
* You can delete memory anytime you want.

Try this

Allocate two new ints on the heap
(dynamically).

Set them equal to 10 and 20 and print them.

Switch the pointers so each pointer now
points to the opposite int.

Print them again.
Deallocate the integers.

Allocating lots of vars at once

e type * ptr = new type[num];

— allocate memory on the heap for num new
variables of type type and return a pointer to it.

e delete[] ptr;

— deallocate the memory pointed to by ptr
— only use delete[] with new(]
— only use delete with new

Variables that grow and/or shrink

e Using new type[num] still doesn't make the
dynamic memory grow or shrink.

e So how do vectors work?

— A vector starts off my allocating (using new) a
"default" amount of space for items in the vector.

— If we add too many things to a vector, it will

allocate more space, copy everything in the vector
into the new space, then delete[] the old space.

Try this

Allocate (on the heap) an array of 5 doubles.
Assignh some numbers to the array.
[Pretend that we want to add more numbers.]

Allocate (on the heap) a second array of 10
doubles.

Copy the doubles from the old array into the new
one.

delete[] the old array.
Print the new array.
delete[] the new array.

