Inheritance |l



|s-a versus has-a

 When an object of class A has an object of
class B, use object composition.

— Class A will have a field (variable) of class B in its
implementation.

* When class A is a specific kind of another class
B, use inheritance.

— Class A will inherit from class B.



|s-a or has-a?

e Class A = Animal
— Heart

— Porcupine
— Duck

* Class A =Phone
— Cell Phone
— Ringtone
— Text Message
— Landline



Constructors with inheritance

* Constructors (even if public) are not
automatically inherited by derived classes.

 Derived classes must create their own
constructors if you want them.



class dog { main:

public:
dog(string s);

dog mydog("Fido");
showdog otherdog("Herbert");

private:
string name;
}s
class showdog : public dog {

s



class dog { main:

public:
dog(string s);

dog mydog("Fido");
showdog otherdog("Herbert");

private:
string name;
}s
class showdog : public dog {
public:

showdog(string s);
¥



Constructors with inheritance

* All classes must have at least one constructor.
— If you don't write at least one, a default one (with
no args) is generated behind the scenes for you.
* Every time an object of a class is constructed,
a constructor must be called.

— Default (no arg) constructor is used unless
otherwise specified.



Constructors with inheritance

* When you construct an object of a derived
class:
— The derived class constructor is called
e default constructor if not otherwise specified

— Before running its own code, the derived class
constructor must call a base class constructor.
e default constructor if not otherwise specified

— Once the base class constructor code runs, the
derived class constructor code runs.



Constructors with inheritance

 Derived class constructors are allowed to
explicitly call base class constructors.

e Commonly used to initialize private variables
that derived classes do not have access to.



class Derived : class Base {

s
Put a colon after the
derived class

Derived: :Derived(...) constructor line, and
explicitly call the Base
. Base(...) constructor that you

{ want.

// normal things here

} Only time in C++ when
you are allowed to

explicitly call a
constructor.




Overriding methods

A derived class is allowed to "rewrite"
methods in a base class.

— Very common; done to alter the way a derived
class behaves.

* This is called overriding.

* Overriding a method in a derived class "hides"
the base class method code and replaces it
with your new code.



 Add two new car types to the race by defining
two new classes that inherit from car:

 Aracecar:

— can accelerate at 10 mph every second, rather
than 5 mph every second

— all race cars have a top speed of 200 mph.

* Aclunker:
— still accelerates at 5 mph per second.
— top speed of 50 mph.

— But after calling drive() 3 times, the car dies,
immediately stops, can't be fixed, and you have to
call your parents to pick you up.



