Objects |



* Aclass is a struct plus some associated
functions that act upon variables of that struct

type.
— class = struct + functions
* An object is a variable of some struct type
— aka "an instance of a class."
* In a class, the variables of that class are called
fields; the functions are called methods.

— Together, the fields and methods are called data
members (book uses data members and member
functions).



class dog Name of the class

public:
string name; Every dog has a name
int age;

}i

Every dog has the ability to

bark

void dog::bark() {
cout << name << "says woof!";



class dog { A class's methods are allowed
to use the fields defined

publlc ) within that class as local
string name; variables.
int age; A method (normally) only has
void bark(); access to the fields for its
} own object.
7

void dog::bark() {

cout << name << "says woof!";



void dog: :bark() {
cout << name << "says

ain

dog regan;

regan.name = "Regan";
regan.age = 3;

}
m

dog jack;
jack.name = "Jack";
jack.age = 8;

regan.bark();
jack.bark();

woof!";
_ name: "Regan"
regan: S
. name: "Jack"
jack:
age: 8

When regan.bark() is called, in
the dog::bark() function, name

is automatically set to "Regan"
and age is set to 3.




void dog: :bark() {
cout << name << "says woof!";

} . _ name: "Regan"

main regan. age: 3

dog regan;

regan.name = "Regan"; " ack!
. Name: JacC

regan.age = 3; jack: ape: 8

dog jack;
jack.name = "Jack";
jack.age = 8;

When jack.bark() is called, in
the dog::bark() function, name
is automatically set to "Jack"
and age is set to 8.

regan.bark();
jack.bark();



* Most object-oriented (OO) programming
languages allow us to specify fields and
methods as public or private.

* Private members can be used only by the
person writing the class (i.e., inside methods).

* Public members can be used by the person
writing the class, or the person using the class.



class A {
public:
int x;
void f();

private:
int y;
void g();
}

int main()

{

A objl, obj2;

objl.x = 4;

2;

objl.y

obj2.f();
obj2.g();

//
//

//
//

ok
error

ok
error



Why have public and private?

e Sometimes we need to hide certain variables
or functions from the user of a class so the
user doesn't accidentally screw things up.

* This is called information hiding.

e Used to protect the members of an object
that should only be used by the person writing
the class. oy




class dog {
What could go

public:
string name; wrong with age or
int age; name being
void bark(); public?

}i

void dog::bark() {
cout << name << "says woof!";



class dog { Good rule of thumb

public: to make all fields

void bark(); (variables) private
unless you have a

private:
string name; very good reason
int age; not to.

}i

void dog::bark() {
cout << name << "says woof!";

}



main

dog regan;

regan.name = "Regan’;
regan.age = 3;

dog jack;
jack.name = "Jack";
jack.age = 8;

regan.bark();
jack.bark();

cout << "Jack 1is " <«

What is wrong
with this code
now?

jack.age << endl;



main | |
dog regan; What is wrong with

regan.name = "Regan”; this code now?
regan.age = 3;

Red fields are
dog Jjack; private; cannot be

J.acllz.name_=8.3ack ) used outside of the
Jack.age = o, class now.

regan.bark();
jack.bark();

cout << "Jack 1is " << jack.age << endl;



class dog { Add setters and
public:

void bark(); getters.
void setName(string newName) ;
string getName();

void setAge(int newAge);

int getAge();

private:
string name;
int age;
}; // rest of code on computer



* The public members of a class are known as the
class's interface.

— These members are what the users of your class see.
— Generally describes what a class does.

* The private members of a class are known as the
class's implementation.
— These are hidden from the user.
— Generally describe how a class works.

 We strive to keep a class's interface consistent

over time. We can change the implementation
any time we want.



What is in a car's interface and implementation?

d VN 1 Automobilemag:€om

7’—",“ -\“ﬁ\\;\/,@ | N




class dog {
public:
int getAgeDogYears();
int getAgeHumanYears();
void setAgeDogYears (int newAge);
void setAgeHumanYears (int newAge) ;

private:
// What would this look like?



To your dog class, add the ability for the dog to have
some amount of energy. The dog's energy can never
go below zero.

Add a method called setEnergy(int newEnergy) so the
user can set the starting energy for the dog.

Add a method for the dog to playFetch(). Playing fetch
tires the dog out, so it lowers the dogs energy by some
amount.

Add a method for the dog to sleep for a certain number
of hours. The dog's energy should be raised
proportionally to the number of hours it sleeps.

Extra: add more methods that change the dog's energy
in some way. Add more fields and methods.



