


* Syntactic sugar: Syntax in a
programming language
that makes something
easier to express.




Example of syntactic sugar

intx=1,y=2; intx=1,y=2;
intz=x+vy; int z=add(x, y)

Many operators are syntactic sugar because
usually they are unnecessary in the language;
we could get by with just functions.



Example of syntactic sugar

vector<int> vec(3); vector<int> vec(3);
vec[0] = 100; vec.set(0, 100);
cout << vec[0]; cout << vec.get(0);

Many operators are syntactic sugar because
usually they are unnecessary in the language;
we could get by with just functions.



Operator overloading

* Function overloading: Allowing different
functions with the same name, distinguished
by argument number or data type(s).

* Operator overloading: Adding new meanings
for operators when used with different data

types.



As simple as defining a function

e Define a function called:

operator+ operator- operator* operator/
operator+= operator< operator++ operator==

* Number of arguments is determined by the
operator name.

—i.e., operator+ always takes two arguments.

* Return type can be anything you want.



Overloading +

vector<int> vecl, vec?2, vec3;
vecl.push back(1);

vecl.push back(2);

vec2.push_back(10);

vec2.push_back(20);

vec3 = vecl + vec2;



Overloading +

vector<int> vecl, vec?2, vec3;
vecl.push back(1);

vecl.push back(2);

vec2.push_back(10);

vec2.push_back(20);

vec3 = vecl + vec2;
cout << vec3;



Overload these operators

vector<int> vec, vec2;

vec +=1; // overload += so it does push _back
vec += 2;

vec +=1;

vec += 3;

vec2 =vec—1; //vec2is now [2, 3]

// overload minus so it removes all
// all instances of an item from a vector



Overloading with classes

class rational {

public: ...
private:

int num, den;

5

rational operator™* (const rational & a, const rational & b)
{
rational ans;

ans.num = a.num * b.num;
ans.den = a.den * b.den;

return ans;

}



Solution 1

class rational {

public:
rational operator*(const rational & b);
private:

int num, den;

5

rational rational::operator* (const rational & b)
{
rational ans;

ans.num = num * b.num;
ans.den =den * b.den;

return ans;

}



Solution 2

class rational {

public:
friend rational operator™ (const rational & a, const rational & b)

private:
int num, den;

5

rational operator® (const rational & a, const rational & b)
{
rational ans;

ans.num = a.num * b.num;
ans.den = a.den * b.den;

return ans;

}



e Qver
e Qver
e Qver

In your rational class

0OaCl
0OaC

0OaCl

<<

+

<

(will need to be a friend)
(put inside class)
(put inside class)



