Polymorphism



Polymorphism

* From Greek noAuc, polys, "many, much" and
nopodn, morphe, "form, shape.”

* The ability for a derived class to substitute in
code where a base class is used.



* This concept is not new:

void f(double x) {
/* do something */;

int main() {
int y = 3;
f(y);

}



C++ will automatically convert a derived class
object to a base class object when required.

Typical situations:
* Variable assighment

e Calling a function



Caveat emptor

* When C++ automatically converts a derived-
class object to a base-class object, the
converted object loses all extra abilities the
derived class had.



class A {

public:

void f() { cout << "base f"; }
}s
class B : public A {

public:
void f() { cout << "derived f"; }

void g() { cout << "derived g"; }
¥
int main() {

A a; a.f();

B b; b.f(); b.g();

A copy = b; copy.f(); copy.g();
}



Caveat emptor

* When C++ automatically converts a derived-
class object to a base-class object, the
converted object loses all extra abilities the
derived class had.

* Copying the derived-class object into a base-
class object means the copy only has the
abilities of the base class.

* How do we avoid making copies?



Step 1: Use Pointers

* A base-class pointer can point to a derived-
class object.

* Because no copy is made, the pointer still

points at an object that has all the abilities of
the derived class.

* The base-class pointer will still only let you

(directly) call functionality specified by the
base class.



Step 2: Use virtual methods

* Class methods can be tagged with the
keyword "virtual."”

 When a virtual method is called using a
pointer, C++ uses the version of the method
that belongs to the type of the object being
pointed at, not the type of the pointer.



