CS 142 Loop Problems

1. Write a program that approximates the value of pi (3.14159...) using the formula
pi=4-(4/3)+(4/5)-(4/7) + (4/9) - (4/11)...

2. Aright triangle can have sides that are all integers. A set of three integer values for the sides of a right triangle is
called a Pythagorean triple. These three sides must satisfy the relationship that the square of the hypotenuse is equal
to the sum of the squares of the other two remaining sides of the triangle. Find all Pythagorean triples for sidel, side2,
and hypotenuse all no larger than 500. Use a triple-nested for loop that tries all possibilities and prints only the ones
that are Pythagorean triples. This is an example of brute-force computation, a technique where you just try all the
possibilities until something works. For many problems, there are better algorithmic techniques than brute-force, but
a brute-force algorithm is often very simple to write code for.

Use manual multiplication to calculate the square of a number (there is a function to compute exponents, but it can be
tricky to use).

3. Write a program that lets the user type in a number from the keyboard and determines if the number is prime or not.

4. Rewrite your guess-the-number game from the first day of class. See the bottom of this page for how to generate
random numbers in C++.

5. Write a program that lets the user type in a number from the keyboard. The program should print out the pseudo-
Roman numeral equivalent of the number. [say “pseudo” because we will simplify Roman numerals a bit by getting
rid of the weird subtraction rules for Roman numerals. For example, normally 9 is written as IX = 10 - 1, but your
program can print VIIIIL.

In Roman numerals, M = 1000, D =500,C=100,L=50,X=10,V=5,and [=1.

Hint: Use a loop that runs until the user’s number becomes equal to zero. Inside the loop, write if statements that test
how big the number is. If the number is bigger than or equal to one of the exact Roman numerals above, print that
numeral, subtract the value from the user’s number, and loop again.

Challenge: make this print out “true” Roman numerals; e.g., for 9 it should print IX, not VIIII. Try to find an algorithm
for this on your own, but [have a hint if you really want it.

Random numbers in C++

The built-in random number generator in C++ (called rand()) generates a random integer between 0 and a very large number
denoted by the built-in constant RAND_MAX. Unlike Python, there is no built-in function to generate a random number
between a specific upper and lower bound. Therefore, the most common way to accomplish this is to take the remainder of
the return value of rand () with the upper bound and add a constant as follows:

int vl = rand() % 100; // vl is in the range © to 99
int v2 = rand() % 100 + 1; // v2 is in the range 1 to 100
int v3 = rand() % 30 + 1985; // v3 is in the range 1985-2014

A further complication arises because rand() always generates the same sequence of random numbers every time you run
your program (unlike Python). (This is actually a useful feature in situations when you need to debug a program that uses
random numbers and you want the program to act exactly the same way each time you run it.) To get around this, put the
following line of code at the beginning of main():

srand(time(0@))

This “seeds” the random number generator with a new value (based on the current time) each time your program runs, so you
get new random numbers each time.

These functions live in the <cstdlib> and <time> libraries, so you should #include both of those files at the top of your
code when you generate random numbers.

