Practice with vector-based algorithms

1.

Linear search is a fundamental algorithm that searches a data structure in one direction, looking for a
specific element, or any element that matches specific criteria. It is normally used with linear data
structures like arrays and lists whose elements are in unsorted order; if the array or list is sorted, normally
one can use the binary search algorithm which is much faster.

Write a function to perform a linear search on a vector of ints to look for a specific item. This function
should return the index of the item if found, and -1 if not found.

int linear_search(vector<int> vec, int lookfor)

Filtering is the idea of taking a data structure and creating a copy of it while retaining only elements that fit
a certain criteria. For example, we may want to take a vector of integers and create a new vector that
contains only the positive integers from the original vector. Sometimes filtering is done on the original
structure (modifying it) instead of making a copy; this is called filtering in place.

Write a function to filter a vector of integers, creating a copy that retains only the ones that are greater than
a given value.

vector<int> filter greater_than(vector<int> vec, int value)

Transforming (sometimes called mapping) is the idea of taking a data structure and creating a copy of it
while applying a function to all of the elements. This “function” does not have to be an actual named C++
function; it can be a piece of code that you write on the fly. For example, you may need a function that adds
one to each element in a vector of integers. Transforming is often combined with filtering to create, for
example, a function that takes a vector of integers, adds one to all of the positive integers, and either
eliminates the negative ones or leaves them alone. Transforming, like filtering, can be done in place
(modifying the original vector rather than making a copy first).

Write a function that takes a vector of ints and returns a new vector (a copy) with all of the integers
doubled; i.e., the vector {1, 2, 3} is transformed into the vector {2, 4, 6}.

vector<int> double(vector<int> vec)

Finding the largest and/or smallest items in a data structure (commonly referred to as maximum and
minimum, or just max and min) are fundamental ideas you will use a lot. Write two functions, called max
and min, that search a vector of integers for the largest and smallest values.

int max(vector<int> vec)
int min(vector<int> vec)

Challenge: Write a function that takes an integer argument and returns the binary representation of that
integer. You can return a vector of ints (each int in the vector represents a single bit, either 0 or 1), or
return one int (where all the bits are put into one number; e.g., 5 gets converted to 101).

vector<int> decimal to binary(int num) or int decimal to binary(int num)
Hint: if you return a vector, you can use logarithms to find the number of bits the number will have when

converted to binary. Just#include <cmath> and use the log function, which computes the natural log
(base e) of its argument. How can you use this to get the number of bits in the answer?



