
CS142	Lab	Day	–	Practice	with	loops	and	functions	
	
1. (skip	if	already	done)	Write	a	function	called	sumrange	that	sums	up	a	range	of	numbers,	given	an	upper	and	lower	bound.		The	

math	should	include	the	lower	number,	but	not	the	upper	number.		Example:	sumrange(1,	5)	returns	10	(1+2+3+4).	
	
int sumrange(int lower, int upper)
	

2. (skip	if	already	done)	It	is	possible	for	a	right	triangle	to	have	sides	that	are	all	integers	(whole	numbers).		A	set	of	three	integer	
values	for	the	sides	of	a	right	triangle	is	called	a	Pythagorean	triple,	such	as	(3,	4,	5).		These	three	sides	must	satisfy	the	
relationship	that	the	square	of	the	hypotenuse	is	equal	to	the	sum	of	the	squares	of	the	other	two	remaining	sides	of	the	
triangle.		Find	all	Pythagorean	triples	for	side1,	side2,	and	hypotenuse	all	no	larger	than	500.		Use	a	triple-nested	for	loop	that	
tries	all	possibilities	and	prints	only	the	ones	that	are	Pythagorean	triples.		This	is	an	example	of	brute-force	computation,	a	
technique	where	you	just	try	all	the	possibilities	until	something	works.		For	many	problems,	there	are	better	algorithmic	
techniques	than	brute-force,	but	a	brute-force	algorithm	is	often	very	simple	to	write.	
	
Use	manual	multiplication	to	calculate	the	square	of	a	number,	rather	than	pow,	and	do	not	use	the	square	root	function	(sqrt)	
either.		The	reason	for	this	is	C++	cannot	represent	some	floating-point	numbers	exactly	inside	a	computer	(just	like	we	can’t	
write	down	1/3	exactly	as	a	decimal),	so	if	we	compare	two	floating-point	numbers	for	equality	in	C++,	it’s	possible	they	will	
come	back	as	“not	equal”	even	if	they	should	be	equal.		In	other	words,	floating-point	math	sometimes	accumulates	round-off	
errors.		Integer	math	(assuming	the	integers	can	fit	in	the	data	type	you	use)	is	always	exact,	so	this	doesn’t	happen.	
	

3. Write	a	function	to	determine	if	a	number	is	prime	or	not.		Recall	that	an	integer	is	prime	if	it	has	no	other	factors	other	than	
itself	and	1.		Return	true	if	the	number	is	prime,	false	if	not.		Hint:	use	a	loop.	
	
bool is_prime(int n)
	

4. Write	a	function	called	gen_random	that	works	like	the	Python	random	number	generator,	with	an	upper	and	lower	bound.		
The	number	generated	should	be	in	that	range,	inclusive.	
	
int gen_random(int lower, int upper)
	

5. Write	a	program	that	lets	the	user	type	in	a	positive	integer	from	the	keyboard.		The	program	should	print	out	the	pseudo-
Roman	numeral	equivalent	of	the	number.		I	say	“pseudo”	because	we	will	simplify	Roman	numerals	a	bit	by	getting	rid	of	the	
subtraction	rules	for	Roman	numerals.		For	example,	normally	9	is	written	as	IX	=	10	–	1,	but	your	program	can	print	VIIII.	
	
In	Roman	numerals,	M	=	1000,	D	=	500,	C	=	100,	L	=	50,	X	=	10,	V	=	5,	and	I	=	1.			
	
Hint:	Use	a	loop	that	runs	until	the	user’s	number	becomes	equal	to	zero.		Inside	the	loop,	write	if	statements	that	test	how	big	
the	number	is.		If	the	number	is	bigger	than	or	equal	to	one	of	the	exact	Roman	numerals	above,	print	that	numeral,	subtract	
the	value	from	the	user’s	number,	and	loop	again.	
	
Challenge:	make	this	print	out	“true”	Roman	numerals;	e.g.,	for	9	it	should	print	IX,	not	VIIII.		Try	to	find	an	algorithm	for	this	on	
your	own,	but	I	have	a	hint	if	you	really	want	it.	
	

6. Let	the	user	enter	a	positive	integer	from	the	keyboard,	called	n.		Print	a	triangle,	made	of	asterisks,	with	base	and	height	of	n	
like	this	(for	n	=	4):	
	
*
* *
* * *
* * * *
	
Then	amend	your	program	so	it	prints	the	other	three	variations	of	this	triangle,	with	the	right-angle	in	the	other	corners.	
(These	triangles	don’t	all	have	to	be	on	the	same	lines	as	shown	below;	they	can	be	below	each	other.)	
	
* * * * * * * * *
* * * * * * * *
* * * * * * *
* * * * * *

