Running time of algorithms

 foe”
/

\ T




How can we measure the running time
of algorithms?

* |dea: Use a stopwatch.

— What if we run the algorithm on a different
computer?

— What if we code the algorithm in a different
programming language?
— Timing the algorithm doesn’t (directly) tell us how

it will perform in other cases besides the ones we
test it on.



How can we measure the running time
of algorithms?

e |dea: Count the number of “basic operations”
in an algorithm.

— “Basic operations” are things the computer can do
“in a single step,” like
* Printing a single value (number or string)
* Comparing two values
e (simple) math, like adding, multiplying, powers
* Assigning a variable a value



* How many basic operations are done in this
algorithm?

— Only count printing as a basic operation.

# assume vec 1s a vector of three 1ints
for (int x = 0; X < 33 X++)
cout << vec|[x]:

# assume vec2 1s a vector of six 1ints
for (int x = 0; X < 63 X++)
cout << vec|[x]:



* How many basic operations are done in this
algorithm?

— Only count printing as a basic operation.

# assume vec 1S a vector of 1ints
for (int x = 0; X < vec.size():; x++)
cout << vec[x]:

If n = vec.size(), what is a general formula for how long this
algorithm takes, in terms of n?



* How many basic operations are done in this
algorithm, in the worst possible case?

— Only count printing as a basic operation.

# assume vec 1s a vector of 1ints
for (int x = 0; x < vec.size(); Xx++)
if (veclx] > 10)
cout << vecl[x];

If n =len(L), what is a general formula for how long this
algorithm takes, in terms of n, in the worst case?



 Computer scientists often consider the
running time for an algorithm in the worst

case, since we know the algorithm will never
be slower than that.

— Sometimes we also care about average running
time.
* We express the running time of an algorithm
as a function in terms of “n,” which represents
the size of the input to the algorithm.

* For an algorithm that processes a list, n is the
length of the list.



/* Assume for both algorithms, var and n are
already defined as positive integers.
Basic ops are printing and adding. */

// algorithm A
var = var + n;
cout << var << endl;

// algorithm B
for (int x = @; X < n; X++)
var++;

cout << var << endl;



Time (T)
AlgB: T(n)=n+1

Alg A: T(n)=2

n=1 Input size (n)



Suppose we count comparisons:

double largest = vec[9];
for (int x = @; x < vec.size(); X++)
{
if (vec[x] > largest) < how many times?
largest = vec|[x]



Suppose we count comparisons:

double largest = -99999;
for (int x = @; x < open.size(); x++)
{
for (int y = 0; y < close.size(); y++)
{
if (close[y] - open[x] > largest)
largest = close[y] - open[x]



Suppose we count comparisons:

double largest = -99999;
for (int x = @; x < open.size(); x++)
{
for (int v = x; y < close.size(); y++)
{
if (close[y] - open[x] > largest)
largest = close[y] - open[x]



 We group running times together based on
how they grow as n gets really big.

* |f the running time stays exactly the same as n
gets big (n has no effect on the algorithm's
speed), we say the running time is constant.

* |f the running time grows proportionally to n,
we say the running time is linear.

— If the input size doubles, the running time roughly
doubles.

— If the input size triples, the running time roughly
triples.



# algorithm A
var = var + n;

cout << var << endl;

What class does algorithm A fall into? [constant or linear]

# algorithm B

for (int x = @; X < n; X++)
var++;

cout << var << endl;

What class does algorithm B fall into? [constant or linear]



Which is "better?"

* |n general, we prefer algorithms that run faster.

— Thatis, as the algorithm's input size grows, the time
required to run the algorithm should grow as slowly
as possible.

* Therefore, an algorithm that runs in constant
time is "generally" preferred over a linear-time
algorithm.



Time (T)
Alg B (linear)

Alg A (constant)

n=1 Input size (n)



# algorithm C:

# assume L has n 1ints 1n 1t

for (int x = 0; x < vec.size(); x++)
cout << vec[x];

# algorithm D:
# assume vec has n 1ints 1n 1t
for (int x = 0; x < vec.size(); x++)
if (vec[x] > 10)
cout << vec[x];



Time (T .
() Alg D (linear) Alg B (linear)

Alg C (linear)

Alg A (constant)

Input size (n)




Classes have special names, which use big-O
notation.

Constant time algorithm: O(1)
Read as “big-oh of 1”7 or “oh of 1”

Linear time algorithm: O(n)
Read as “big oh of n” or “oh of n”

These classes give us a rough estimate of how
fast an algorithm runs, without worrying about
details.



* How many basic operations are done in this

algorithm?
— Only count printing as a basic operation.

# assume M is a n by n matrix of numbers

for (int x =
for col in range(@, n):
print(M[row] [col])

What is a general formula for how long this algorithm
takes, in terms of n?



e Algorithm which doesn’t get slower as input size
increases is a constant-time algorithm.

* Algorithm whose running time grows
proportionally to input size is a linear-time
algorithm.

* Algorithm whose running time grows
proportionally to the square of the input size is a
quadratic-time algorithm.

— 0(n?)



Watch Phil Tear A Phone Book in Half




e |f alistis sorted, you can use the binary search
algorithm to find the position of an element in

the list.
— Takes logarithmic time.

 |f alistis not sorted, you can't use binary
search; you have to use sequential search.

— Takes linear time.



* Some problems have algorithms that run even
more slowly than quadratic time.
— Cubic time (n3), higher polynomials, ...
— Exponential time (2") is even slower!

* |[n some situations, we depend on the fact that
we don't have fast algorithms to solve
problems.

— Usually security situations involving breaking
codes.



Time (T) exponential
guadratic
linear

logarithmic

constant

Input size (n)



One million “basic” operations per second.

n=10

n =20
n=30

n =50

n =100
n=1,000

n =10,000
n =100,000

n=1,000,000



One million “basic” operations per second.

0.0033 ms
n =20 0.0043 ms
n=30 0.0049 ms
n =50 0.0056 ms
n =100 0.0066 ms
n=1,000 0.0099 ms

n =10,000 0.0133 ms
n=100,000 0.0166 ms

n=1,000,000 0.0199 ms



One million “basic” operations per second.

0.0033 ms 0.01 ms

n =20 0.0043 ms 0.02 ms
n=30 0.0049 ms 0.03 ms
n =50 0.0056 ms 0.05 ms
n =100 0.0066 ms 0.1 ms
n=1,000 0.0099 ms 1 ms

n=10,000 0.0133 ms 10 ms
n = 100,000 0.0166 ms 0.1 sec

n=1,000,000 0.0199 ms 1 sec



One million “basic” operations per second.

0.0033 ms 0.01 ms 0.1 ms
n =20 0.0043 ms 0.02 ms 0.4 ms
n=30 0.0049 ms 0.03 ms 0.9 ms
n =50 0.0056 ms 0.05 ms 2.5 ms
n =100 0.0066 ms 0.1 ms 0.01 sec
n=1,000 0.0099 ms 1 ms 1 sec
n=10,000 0.0133 ms 10 ms 1.67 min
n =100,000 0.0166 ms 0.1 sec 2.77 hours

n=1,000,000 0.0199 ms 1 sec 11.57 days



One million “basic” operations per second.

0.0033 ms 0.01 ms 0.1 ms 1.024 ms
n =20 0.0043 ms 0.02 ms 0.4 ms
n=30 0.0049 ms 0.03 ms 0.9 ms
n =50 0.0056 ms 0.05 ms 2.5 ms
n =100 0.0066 ms 0.1 ms 0.01 sec
n=1,000 0.0099 ms 1 ms 1 sec
n=10,000 0.0133 ms 10 ms 1.67 min
n =100,000 0.0166 ms 0.1 sec 2.77 hours

n=1,000,000 0.0199 ms 1 sec 11.57 days



One million “basic” operations per second.

n =20

n=30

n =50

n =100
n=1,000

n =10,000

n =100,000

n =1,000,000

0.0033 ms

0.0043 ms
0.0049 ms

0.0056 ms
0.0066 ms
0.0099 ms

0.0133 ms
0.0166 ms

0.0199 ms

0.01 ms

0.02 ms
0.03 ms

0.05 ms
0.1 ms
1 ms

10 ms

0.1 sec

1 sec

0.1 ms

0.4 ms
0.9 ms

2.5 ms
0.01 sec
1 sec

1.67 min
2.77 hours

11.57 days

1.024 ms
1.049 sec



One million “basic” operations per second.

n =20

n=30

n =50

n =100
n=1,000

n =10,000

n =100,000

n =1,000,000

0.0033 ms

0.0043 ms
0.0049 ms

0.0056 ms
0.0066 ms
0.0099 ms

0.0133 ms
0.0166 ms

0.0199 ms

0.01 ms

0.02 ms
0.03 ms

0.05 ms
0.1 ms
1 ms

10 ms

0.1 sec

1 sec

0.1 ms

0.4 ms
0.9 ms

2.5 ms
0.01 sec
1 sec

1.67 min
2.77 hours

11.57 days

1.024 ms

1.049 sec
17.9 min



One million “basic” operations per second.

0.0033 ms 0.01 ms 0.1 ms 1.024 ms
n =20 0.0043 ms 0.02 ms 0.4 ms 1.049 sec
n=30 0.0049 ms 0.03 ms 0.9 ms 17.9 min
n=>50 0.0056 ms 0.05 ms 2.5 ms 35.7 years
n =100 0.0066 ms 0.1 ms 0.01 sec
n=1,000 0.0099 ms 1 ms 1 sec
n=10,000 0.0133 ms 10 ms 1.67 min
n =100,000 0.0166 ms 0.1 sec 2.77 hours

n=1,000,000 0.0199 ms 1 sec 11.57 days



One million “basic” operations per second.

0.0033 ms 0.01 ms 0.1 ms 1.024 ms
n =20 0.0043 ms 0.02 ms 0.4 ms 1.049 sec
n=30 0.0049 ms 0.03 ms 0.9 ms 17.9 min
n=>50 0.0056 ms 0.05 ms 2.5 ms 35.7 years
n =100 0.0066 ms 0.1 ms 0.01sec 4 x10'*%vyears
n=1,000 0.0099ms 1ms 1 sec 3 x 10%87 years
n=10,000 0.0133 ms 10 ms 1.67 min  --—-
n =100,000 0.0166 ms 0.1 sec 2.77 hours ----

n=1,000,000 0.0199 ms 1 sec 11.57 days --—--



