
“MyVector”	Lab	
	
In	this	lab,	you	will	create	your	own	version	of	the	vector	data	type.		To	simplify	things,	our	vectors	will	only	store	integers,	
and	they	will	only	have	the	ability	to	get	larger	on	the	fly	as	we	add	items,	not	get	smaller	if	we	remove	items	(the	way	C++	
vectors	can).		Furthermore,	we	will	add	bounds-checking	to	myvectors	like	Python.	
	
Here’s	how	a	myvector	will	work	(very	similar	to	C++	vectors):	

• The	items	in	a	myvector	will	be	stored	on	the	heap,	in	a	dynamically-allocated	array.		We	need	to	do	this	because	all	
arrays	declared	on	the	stack	(automatic	variables)	must	have	their	sizes	set	in	stone	at	compile-time,	and	we	don’t	
want	that	restriction.	

• A	myvector	is	comprised	of	three	variables	(in	the	private	section	of	a	class):	
o int* items,	a	pointer	to	a	C++	array	of	integers	on	the	heap.	
o int size,	the	current	number	of	items	in	the	myvector	(from	the	user’s	perspective)	
o int capacity,	the	current	capacity	of	the	items	array	(from	the	programmer’s	perspective)	

• We	need	both	size	and	capacity	because	as	we	add	items	to	the	myvector,	we	don’t	want	to	overflow	the	array	too	
often.		Therefore,	we	will	allocate	extra	space	in	the	array	that	we	will	use	up	as	we	put	items	into	the	myvector.	

• When	size	equals	capacity,	this	means	the	array	is	full	and	we	can’t	add	any	more	items.		If	the	user	asks	to	add	
another	item,	we	will	have	to	allocate	a	new	block	of	memory	for	a	new	array	(with	some	more	extra	space),	copy	the	
items	in	the	old	array	into	the	new	one,	then	de-allocate	the	old	array.	

• So	we	can	see	the	re-allocation	happen	more	often,	a	myvector	will	have	an	initial	capacity	of	3	and	will	grow	by	3	
items	every	time	we	increase	the	capacity,	even	though	in	reality	this	is	way	too	small	an	increment	(10	is	probably	
more	common).	

	
Begin	with	the	Dropbox	code,	and	write	the	following	functions	along	with	a	main()	function	to	test	them	as	you	write	them. 
	

1. Write	the	constructor,	which	creates	a	new	myvector	with	size=0	and	capacity=3,	and	allocates	space	on	the	heap	
for	these	three	future	elements.		This	means	from	the	user’s	perspective,	the	myvector	will	be	empty,	but	behind	the	
scenes,	there	is	space	to	add	three	items	before	we	need	more	memory.	
	

2. Write	the	destructor.		Deallocate	the	space	for	items	in	this	myvector.		The	destructor	will	be	called	automatically	
when	your	myvector	goes	out	of	scope.	
	

3. Write	print().		This	method	should	print	the	contents	of	the	myvector	using	cout,	along	with	the	size	and	capacity	
(for	debugging	purposes).		Label	the	size	and	capacity	so	we	can	easily	identify	them.		Note	that	you	should	only	print	
the	items	at	positions	[0]	through	[size-1],	because	while	there	might	be	more	“valid”	positions	if	capacity	>	size,	
we	know	(at	the	moment)	those	positions	don’t	hold	any	meaningful	values.		Test	in	main().	
	

4. Write	push_back().		Adds	a	new	value	to	the	end	of	the	myvector.		This	will	increase	size	by	one.		For	now,	if	there	
is	no	more	space	left	(size == capacity),	print	an	error	message	and	don’t	add	the	new	number	(we	will	work	on	
the	re-allocation	later).		Test	in	main().	
	

5. Write	get().	Return	items[pos]	in	the	myvector,	assuming	0	<=	pos	<	size.		If	this	is	not	true,	print	an	error	
message	and	return	-1.		Test	in	main().	
	

6. Edit	your	push_back()	function	to	support	adding	a	new	element	when	the	array	is	full.		To	do	this,	allocate	a	new	
array	on	the	heap	with	enough	space	for	the	current	capacity	+	3.		Then	copy	(you	will	need	to	use	a	for	loop)	each	
item	from	the	old	array	into	the	new	array.		Then	add	the	new	value	(that	would	have	overflowed	the	original	array)	
to	the	appropriate	place	in	the	new	array.		Then	deallocate	the	old	array.		When	done,	size	should	be	increased	by	1,	
capacity	should	be	increased	by	3,	and	items	should	point	to	the	new	array.		Make	this	function	print	a	message	
during	the	re-allocation	so	you	can	see	when	it	happens.		Test	in	main().	

	
If	you	finish	early,	try	these:	

• Add	a	set	function	to	change	an	item	in	the	myvector.	
• Add	a	remove_back	function	to	remove	the	last	item	in	the	myvector.	
• Add	a	remove	function	to	remove	an	item	from	a	specific	position	in	the	myvector;	e.g.,	v.erase(2)	above	would	

remove	the	item	at	position	2	in	v.		Any	items	to	the	right	should	slide	over	to	not	leave	a	hole	in	the	myvector.	
• Change	the	remove	functions	so	that	when	size	drops	too	far	below	capacity,	the	array	is	re-allocated	to	eliminate	

some	of	the	unused	space.	


