
Objects/Inheritance	Wrapup



• Class:	description	of	a	data	type	that	can	
contain	fields	(variables)	and	methods	
(functions)
– Think	of	a	class	as	a	template	for	creating	objects.

• Object:	a	particular	instance	of	a	class.

class point { … };
point p1, p2;

point	is	the	class.
p1	and	p2	are	objects	
of	the	point	class.



• When	a	class	is	a	particular	kind	of	another	
class,	use	inheritance.

class X { void f(); };
class Y : public X { void g(); };
void X::f() { cout << "Base f"; }
void Y::g() { cout << "Derived g"; }

X ex; Y why;
ex.f();
why.f();
why.g();

Prints	"Base	f"

Prints	"Base	f"

Prints	"Derived	g"



• A	derived	class	is	allowed	to	overridemethods	
in	the	base	class.

class X { void f(); };
class Y : public X { void f(); };
void X::f() { cout << "Base f"; }
void Y::f() { cout << "Derived f"; }

X ex; Y why;
ex.f();
why.f();

Prints	"Base	f"

Prints	"Derived	f"



• If	a	derived	class	overrides	a	method,	the	
overridden	method	code	can	still	call	the	base	
class	version	of	the	method	if	needed.

class X { void f(); };
class Y : public X { void f(); };
void X::f() { cout << "Base f"; }
void Y::f() { X::f(); cout << "Derived f"; }

X ex; Y why;
ex.f();
why.f();

Prints	"Base	f"

Prints	"Base	f	Derived	f"



• Sometimes	a	class	needs	access	to	"itself"	as	a	
stand-alone	object:

class X { void f(); };

void g(const X & ex) { … }

void X::f() {
// how can I call g on myself?

}



• Every	object	has	a	special	variable	called	this
that	is	available	to	be	used	inside	any	method	
in	the	class.

• this is	always	a	pointer	to	the	object	itself.
• In	other	words,	for	a	class	X,	the	data	type	of	
this is	X*.



• Sometimes	a	class	needs	access	to	"itself"	as	a	
stand-alone	object:

class X { void f(); };

void g(const X & ex) { … }

void X::f() {
g(*this);

}



• We	know	that	the	keyword	const declares	that	
a	function	will	not	change	an	argument:

void g(const vector<int> & vec) { … }



• We	know	that	the	keyword	const declares	that	
a	function	will	not	change	an	argument:

void g(const vector<int> & vec) { … }

• This	const keyword	can	also	be	used	with	a	
class's	methods	to	declare	that	the	method	
will	not	change	any	of	the	object's	fields.



class point {
public: 
int get_x();
int get_y();

private:
int x, y;

};
int point::get_x() {
return x;

}
int point::get_y() {
return y;

}



class point {
public: 
int get_x() const;
int get_y() const;

private:
int x, y;

};
int point::get_x() const {
return x;

}
int point::get_y() const {
return y;

}


