
Rational	Numbers	Lab	–	Day	2	
	
A	rational	number	is	a	number	that	can	be	expressed	as	the	quotient	of	two	integers,	where	the	denominator	is	not	zero.		For	
instance,	1/2,	3/4,	40/17,	and	5/1	are	all	rational	numbers.		C++	does	not	have	a	rational	data	type,	and	therefore	stores	all	
rational	numbers	as	floats	or	doubles.		This	can	cause	problems	because	some	rational	numbers,	such	as	1/3,	cannot	be	
represented	exactly	in	decimal	notation	(at	least	not	with	a	finite	number	of	digits).		In	this	lab,	you	will	create	a	simple	
rational	class	to	better	represent	(positive)	rational	numbers.	
	

1. Add	a	method	to	your	class	that	lets	you	multiply	two	rational	numbers	together.		This	function	should	take	one	
rational	number	argument	and	return	the	product	of	the	class’s	rational	number	with	the	argument:	
	
rational rational::multiply(const rational & other) const

Example	of	how	this	might	be	used:	
	
rational a(1, 2);
rational b(3, 4);
rational c = a.multiply(b); // a and b are unchanged, c is 3/8

Hint:	This	is	easier	if	you	let	your	reduce()	function	do	some	of	the	work	for	you.	
	
Add	code	to	main	to	thoroughly	test	the	function	after	you	write	it!		(Do	this	for	all	the	functions	below!)
	

2. Add	a	method	to	your	class	that	lets	you	add	two	rational	numbers	together.		This	function	should	take	one	rational	
number	argument	and	return	the	sum	of	the	class’s	rational	number	with	the	argument:	
	
rational d(2, 3);
rational e(3, 4);
rational f = d.add(e); // d and e are unchanged, f is 17/12
	

3. Add	a	method	to	your	class	that	lets	the	user	retrieve	the	rational	number	as	a	double.		In	other	words,	the	user	would	
call	this	method	when	they	want	to	represent	1/2	as	0.5	(temporarily,	anyway).	
	
double rational::as_double() const
	

4. You	will	notice	that	this	code	does	not	do	what	you	would	expect:	
	
rational a(1, 2), b(1, 2); // make two rational numbers, both are one half.
if (a == b)
 cout << “equal!”; // doesn’t print equal (doesn’t even compile!)
	
Define	a	method	called	is_equal	that	tests	if	two	rational	numbers	are	equal:	
	
bool rational::is_equal(const rational & other) const
	

5. Define	a	“less	than”	function:	

bool rational::is_less_than(const rational & other) const

6. In	your	main	function,	define	a	vector	of	rational	numbers.		Use	push_back	to	add	a	few	rational	numbers	to	the	
vector	(just	make	some	up	and	put	them	in	manually	using	push_back).		Write	a	function	to	find	the	largest	rational	
number	in	the	vector	and	print	it	out.	

